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SUMMARY 

 

Head and neck squamous cell carcinoma (HNSCC) is the 6
th

 most prevalent 

cancer worldwide, and more than 12,000 deaths from this disease are anticipated in 2015 

in the U.S. alone. The advent of the “Big Data” era for biomedicine, through the 

widespread use of genomic, transcriptomic, and other –omic data acquisition 

technologies, has enabled deeper exploration of the molecular-level mechanisms behind 

HNSCC development and progression. This knowledge in turn can lead to earlier 

diagnosis and better treatment strategies, resulting overall in better patient outcomes. 

However, the volume and complexity of –omic data present a major obstacle to fully 

realizing its potential to accelerate and enable basic and translational research for 

HNSCC.  

The goal of this Ph.D. dissertation is to address several key technical challenges 

related to harnessing –omic data for clinical HNSCC research. These are (1) the lack of 

knowledge-driven modeling tools and systems for discovering biomarkers at the protein 

and metabolite levels; (2) the lack of effective strategies for integrating heterogeneous 

types of –omic data for prediction; and (3) the lack of systems-level representations of 

biomarker knowledge for effectively predicting responses to bioactive agents. This 

dissertation addresses these challenges through three specific aims:  

1. Knowledge-driven  Data Mining: To develop modeling tools to mine  –omic  

datasets in HNSCC for biomarker discovery by harnessing existing knowledge 

2. Integrated –Omic Modeling: To develop supervised learning models for 

predicting HNSCC  progression through integration of –omic datasets 
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3. System Modeling: To develop dynamic system models for predicting response to 

combinations of multi-target agents against HNSCC 

The research in this dissertation was completed in collaboration with the Winship 

Cancer Institute and Georgia Institute of Technology. The models and tools developed 

have been systematically evaluated and validated using a variety of –omic data types. 

These results and associated case studies demonstrate the contribution of this work to and 

its future potential in computational HNSCC research.  
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CHAPTER 1 

INTRODUCTION 

1.1 Head and Neck Squamous Cell Carcinoma (HNSCC) 

Head and neck cancer arises in the upper aerodigestive tract, at regions including 

the oral cavity, oropharynx, larynx, hypopharynx and tongue, as shown in Figure 1.1. As 

the vast majority (more than 95%) of head and neck cancers are squamous cell 

carcinomas [1], hereafter in this dissertation the disease will be referred to as head and 

neck squamous cell carcinoma (HNSCC).  

 

Figure 1.1: Disease subsites for HNSCC. Figure from National Cancer Institute: 

http://www.cancer.gov/cancertopics/factsheet/Sites-Types/head-and-neck 

 

1.1.1. Statistics and Epidemiology 

HNSCC is the 6
th

 most prevalent cancer globally, with more than 600,000 new 

cases expected annually [1-4]. In the U.S. in particular, it represents 3% of all cancers, 

and in 2015 approximately 60,000 new cases and more than 12,000 deaths are expected.  

http://www.cancer.gov/cancertopics/factsheet/Sites-Types/head-and-neck
http://www.cancer.gov/cancertopics/factsheet/Sites-Types/head-and-neck
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Historically, HNSCC has been associated with alcohol and tobacco usage, and 

particularly by their use in combination [1, 5]. There is also a high prevalence of the 

disease in East and Southeast Asia, associated with the popularity of betel (areca) nut 

chewing [6, 7]. Overall, the disease is most prevalent among males over the age of 60. 

However, there is a growing subpopulation of HNSCC cases associated with human 

papillomavirus (HPV) infection. These patients tend to be younger, lack a history of 

alcohol and tobacco use, and predominantly experience cancer of the oropharynx.  

1.1.2. Current Approaches for Treatment and Prevention 

HNSCC treatment options include surgery, radiation, chemotherapy, or 

combinations of these treatments; specific treatment protocols vary based on disease sub-

site and the stage at which the cancer presents [8]. Many patients with locally advanced 

(stage III/IV) disease respond favorably to treatments, and reach the so-called No 

Evidence of Disease (NED) status [9-13]. However, NED patients often later experience 

recurrence, secondary primary tumor (SPT) development, or metastatic disease. These 

factors give rise to the poor 5-year survival percentages (near 50%) observed for many 

HNSCC subsites [14].   

1.2. The Role of Big Data: Opportunities and Challenges 

The sequencing of the human genome in the previous decade heralded the era of 

“Big Data” in biomedicine. The concept of Big Data refers not only to the size of datasets 

being generated, but also to the complexity, quality, and utility of the measured features 

and to the speed of overall data acquisition. A common shorthand for these characteristics 

is the “five V’s”: volume, variety, velocity, veracity, and value [15, 16]. The recent  
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Figure 1.2: Analysis pipeline for Big Data in biomedicine 

 

establishment of the Big Data to Knowledge (BD2K) initiative by the National Institutes 

of Health emphasizes the importance of this direction of research to multiple diseases, 

including cancers. The fundamental goal of Big Data analysis is to transform raw data, 

which may be too voluminous and complex for human interpretation, into organized, 

high-quality information and then into easily understandable knowledge. This is in turn 

used for decision-making and concrete actions. Figure 1.2 describes this pipeline.  

In biomedicine, this pipeline is embodied by the identification of putative 

biomarkers that can be validated and then applied in clinical practice. Such biomarkers 

are individual genes, proteins, or other types of measurable characteristics which are 

associated with the disease state. There are two main reasons why biomarker research is 

important [17-19]. First, biomarkers may be harnessed for clinically relevant goals such 

as early detection, diagnosis, or patient stratification. Second, identified molecules may 

themselves be druggable targets, or they may interact with such targets, and therefore are 

of interest in pharmaceutical research.  

One of the main sources of Big Data in biomedicine are the so-called ‘-omic’ 

technologies, which are capable of measuring completely, or to a large coverage extent, 

the genome, epigenome (epigenetic modifications), transcriptome (mRNA transcripts), 
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proteome (expressed as well as functionally active proteins), metabolome (metabolites, 

including lipids), and other bio-molecular feature spaces. The availability of these large-

scale, high-resolution data has helped to identify molecular expression patterns 

underlying many diseases, including HNSCC [20-22]. However, harnessing the potential 

of Big Data for HNSCC is far from complete. Here, I identify three major challenges 

related to applying –omic data for better understanding of HNSCC characteristics and for 

translating them into therapeutic strategies.  

1.2.1. Genomics and Downstream –Omics: Knowledge-driven Mining for 

Transcriptomics, Proteomics, and Metabolomics 

Cancer is a genetic disease in the sense that the transformation of normal cells to 

cancer cells is driven by alterations to the genome [23-27]. Great strides have been made 

in uncovering genomic changes associated with many types of cancers, including 

HNSCC. In particular, large-scale initiatives by The Cancer Genome Atlas have 

systematically explored the patterns in mutations, copy number variations, and epigenetic 

effects associated with HNSCC [28-30]. Validated oncogenes, such as PIK3CA and 

CCND1, and tumor suppressors, such as TP53 and PTEN, have focused attention on key 

biological pathways and processes that contribute to the development and progression of 

HNSCC. The most recent such analysis by TCGA also delineated four different sub-types 

of HNSCC [30].   

However, identifying alterations at the genomic level is insufficient to fully 

characterize the disease state. Downstream effects of the altered genome propagate 

through and modify the expression of genes, proteins, and metabolites. The ongoing 

advancement of sequencing (RNAseq), mass spectrometry, and array-based technologies  
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Figure 1.3: Comparison of the current number of PubMed hits for alternative –omics 

technologies in combination with head and neck cancer 

 

provides powerful tools for data acquisition at these –omic levels. However, compared to 

progress in genomics, HNSCC research in proteomics – and especially in metabolomics – 

remains at an early stage. For example, Figure 1.3 compares publication counts in 

PubMed for these areas. One of the reasons is the inherent nature of the data: while 

genomic and transcriptomic data are completely described by nucleic acid sequences, 

amino acids describe only protein primary structure. Protein function and activity are 

determined by higher order structures and a complex network of regulatory interactions. 

Metabolites also exhibit great structural diversity, and are not encoded in the genome at 

all. In addition to this, high variation in abundance levels makes measurement and 

identification – and hence data interpretation – challenging [31]. Another critical reason 

is the lag in developing appropriate computational tools [32]. However, recent studies 

have underscored the importance of proteomics and metabolomics in understanding 

HNSCC development and progression [33-36]. Therefore, a key challenge is to develop  
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Figure 1.4: Comparison of the 5-year survival rates (point estimates) for early (solid 

lines) and locally advanced (dashed lines) HNSCC of the tonsil, tongue, and oral cavity, 

between 1982 and 2006. Data from [14]. 

 

mathematical models and tools for accelerating the identification of putative HNSCC 

biomarkers, particularly for proteomic and metabolomic data. And fundamentally, it is of 

interest to develop knowledge-driven models and tools, which can harness existing 

biological and biomarker knowledge to facilitate and accelerate data mining.  

1.2.2. Integrated –Omics for Predicting Disease Progression 

For most HNSCC subsites, there is a large difference in expected outcomes 

depending on the stage at which the disease is detected [14, 37]. Figure 1.4 shows trends 

for three subsites. Therefore, understanding the molecular-level changes that accompany 

disease development and progression could result in biomarkers for early diagnosis and 

in potential therapeutic targets. Recent modeling studies have investigated the differences 

between pre-malignant lesions and oral cancer using transcriptomic data [38, 39], and 

several transcriptomic, proteomic, and metabolomic studies have examined the 

differences between early and advanced stage HNSCC [34, 40-46]. However, these 

studies have yielded mixed results overall. Some identified discriminatory features 
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between early and advanced stage samples, while others did not. Moreover, some models 

for similar endpoints, using the same data type, identified non-overlapping feature sets.  

Therefore, a key challenge in computational HNSCC research is effective data 

integration. Integration can occur both within and between –omic levels: by combining 

data of similar types across platforms (e.g., protein expression array and protein 

expression measured via mass spectrometry), or by combining different types of data 

(e.g., protein and gene expression data). Within –omic levels, some heterogeneity among 

datasets is expected due to experimental protocol- and platform-related factors; however, 

agreement is expected among fundamental putative biomarkers. Between –omic levels 

(e.g., genes and proteins), greater variation is expected because of the complex regulatory 

effects involved [47]. Better understanding of the key molecular features at each –omic 

level can provide insight into how these diverse molecular species collectively drive 

overall disease progression. Consequently, models which harness multiple types or levels 

of –omic data could provide better predictive performance and clinical utility.  

1.2.3. Combination Strategies for Chemoprevention  

Advances in –omic data acquisition and analysis have highlighted the importance 

of many signaling and metabolic pathways in HNSCC. As a result, molecularly targeted 

agents are emerging as a complement to conventional chemotherapeutics [2, 48]. 

However, due to factors such as pathway cross-talk, the response to individual targeted 

therapies has been limited, while those of combination therapies are promising. Some of 

these targeted agents, such as erlotinib and celecoxib, are also being applied for 

chemoprevention, in order to delay or prevent cancer progression [49, 50]. While these 

adjuvant chemoprevention therapies have shown promising effects in initial trials, 
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toxicity is a limiting factor. Therefore, the ongoing development of non-toxic agents for 

chemoprevention derived from natural dietary compounds, such as fruits and spices, is an 

important research direction [51, 52]. Aside from non-toxicity, one of the key strengths of 

these natural compounds, such as (-)epigallocathecin gallate (EGCG) from green tea, is 

that they are multi-target, interacting with key signaling pathways in complex manners. 

Moreover, combinations of natural compounds have demonstrated synergistic effects that 

can help compensate for limiting factors like low bioavailability [53-56].  

Observations regarding individual versus combination strategies indicate that for 

predicting therapeutic and chemopreventive outcomes, it is insufficient to only identify 

molecular biomarkers. It is also necessary to gain a “systems-level” understanding of 

their roles in the context of signal transduction and metabolic pathways. This paradigm of 

data mining followed by modeling reflects the data  information  knowledge  

action pipeline in Big Data research, since a system model is a higher-level representation 

of biomarker knowledge. Quantitative representations of cancer cell population and 

tumor growth have a long history in cancer research [57, 58]. In particular, the 

developing area of multi-scale cancer modeling explicitly links molecular-level 

observations, such as up-regulation of particular enzymes, to higher-level pathologically 

observed features, such as tumor aggressiveness. These representations are important for 

understanding system behavior and responses [59, 60]. However, previous modeling 

studies for HNSCC have focused on radiotherapy and chemotherapy, not targeted or 

multi-target therapeutic agents. Therefore, a key challenge is to develop a multi-scale 

modeling framework for HNSCC that can effectively predict the effects of combining 

multi-target agents.  
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1.2.4. Mathematical Modeling to Accelerate Translational Research 

Mathematical modeling approaches are critical for addressing the challenges 

discussed in the preceding sections. The proposed solutions to these challenges are 

categorized into three main focus areas: (1) knowledge-driven mining, (2) data 

integration, and (3) system modeling. These approaches are all critical for handling the 

volume, variety, and velocity characteristics of Big Data. First, because of the volume 

and velocity of –omic data acquisition, modeling contributions that utilize existing 

knowledge to guide mining can help ameliorate the bottleneck imposed by analyzing 

large datasets. Second, data integration approaches are necessary for extracting 

knowledge from the volume (within –omic data types) and variety (between –omic data 

types) of large biological datasets. Lastly, system modeling provides a higher-level 

organization to the knowledge obtained through knowledge-driven data mining and data 

integration, and can generate specific, quantitative, and testable predictions. 

1.3. Proposed Study and Organization of Dissertation 

This dissertation focuses on addressing the three previously described key 

challenges related to HNSCC progression and chemoprevention. This is accomplished by 

developing mathematical models for data mining and for predicting system dynamics. 

The Specific Aims of this research are: 

1. Knowledge-Driven  Data Mining: To develop modeling tools to mine  –omic  

datasets in HNSCC for biomarker discovery by harnessing existing knowledge 
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Figure 1.5: Workflow of Dissertation Research 

 

2. Integrated –Omic Modeling: To develop supervised learning models for 

predicting HNSCC  progression through integration of –omic datasets 

3. System Modeling: To develop dynamic system models for predicting response to 

combinations of multi-target agents against HNSCC 

In combination, this suite of modeling tools accelerates knowledge extraction 

from –omic Big Data in HNSCC.  Chapter 2 of this dissertation focuses on Knowledge-

Driven Data Mining, through the development of similarity measures applicable to 

multiple –omic data types. Chapter 3 also addresses Knowledge-Driven Data Mining, but 

focuses on constructing a system specifically for mining metabolomic data. Chapters 4 
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and 5 are focused on Integrated –Omic Modeling. Chapter 4 develops models for 

predicting HNSCC pathological stage by integrating transcriptomic and proteomic data. 

Chapter 5 proposes models for early detection of HNSCC through the integration of 

multiple transcriptomic datasets. Chapter 6 addresses System Modeling by developing 

multi-scale models for predicting the response to natural compound adjuvants for 

HNSCC chemoprevention.  

Figure 1.5 describes the overall workflow of this dissertation, including the 

Specific Aims, the data types considered, and the developed models and tools. Chapter 7 

concludes the dissertation by summarizing the key deliverables, including publications, 

and by discussing future directions for research.  
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CHAPTER 2 

SIMILARITY MEASURES FOR EXPLORATORY DATA MINING  

2.1. Applications of Similarity in Biomedical Research 

Similarity measures are an important tool in the analysis of a wide range of 

biomedical data, with applications such as comparing peptide sequences [61] and gene 

expression data [62], as well as in text mining [63] and in image analysis [64, 65]. An 

important application of similarity measures is the detection of new and potentially 

functionally relevant patterns in large-scale biological datasets [62, 65, 66]. For example, 

if a particular gene is known to be associated with a disease, other genes potentially 

related to the disease may be detected by identifying highly similar patterns of 

expression. In this respect, similarity measures can be used to provide a shortlist of 

targets for further research.  

Different similarity measures exhibit considerable variation in properties and 

performance [67, 68]. For example, many common measures do not have a probabilistic 

framework, although this is a useful property in terms of the interpretation of assigned 

similarity scores [69]. In this chapter, similarity measures with a probabilistic 

interpretation are proposed and developed. The first measure is restricted to two-class 

data, i.e., the comparison of binary images and data vectors. This model utilizes the 

hypergeometric distribution and Fisher’s exact test. However, many types of biological 

data are not inherently binary in nature, and the thresholding process can discard useful 

information. Thus, the second measure utilizes the multivariate hypergeometric 

distribution and the Fisher-Freeman-Halton test to extend the first model to accommodate 

the comparison of non-binary, “multi-class” data.  
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2.2. Introduction to Mass Spectrometry Imaging 

Mass spectrometry imaging (MSI) data is used several times in this chapter for 

testing the similarity measures, due to the unique combination of molecular and 

morphological information it provides. It is also used in Chapter 3. Therefore, this section 

provides a brief introduction to MSI in order to facilitate interpretation of later results. 

MSI is an extension of conventional (non-imaging) mass spectrometry that can 

yield spatially-resolved information about the molecular composition of a biological 

sample. MSI datasets are generated by acquiring the complete mass spectrum at multiple 

points across the sample surface, yielding a three-dimensional (x,y: spatial dimensions, 

e.g. tissue, and z: spectral dimension) dataset as shown in Figure 2.1. The MSI dataset 

includes valuable information which is not obtainable through similar analyses using 

immunohistochemistry staining or conventional mass spectrometry. In traditional 

histological analysis, tissue is typically stained for a small number of molecular targets. 

In contrast, MSI is capable of simultaneously tracking thousands of m/z (mass-to-charge 

ratio) values. Depending on the MSI acquisition modality, each m/z value can be  

 

 

 

 

Figure 2.1: (left) Three-dimensional structure of MSI data. (right): False-color 

visualizations of multiple m/z values from MSI datasets of mouse models of Tay-

Sachs/Sandhoff disease. 
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interpreted as a molecule or molecular fragment. Additionally, staining can only identify 

known molecular targets, while the large-scale data acquired by MSI enables discovery 

of sample components (and hence, potential biomarkers). Compared to mass 

spectrometry alone, MSI preserves the sample’s spatial and morphological information. 

Thus, spectra corresponding to different regions of tissue samples like biopsies (e.g., 

tumor, marginal, or normal regions) can be differentiated, enabling more detailed and 

target-specific analysis. Due to these benefits, MSI is emerging as a popular experimental 

technique in proteomics [70], lipidomics [71], and metabolomics [72] research.  

Because MSI is spatially-resolved, it is particularly relevant for research into 

diseases which have spatially localized characteristics – such as cancer. Recent MSI 

studies have investigated HNSCC [73], as well as cancers of the brain [74], breast [75], 

kidney [76], stomach [77], prostate [78], colon [79], pancreas [80], and bladder [81]. 

Other recent MSI studies have targeted diseases including Tay-Sachs/Sandhoff disease 

[82], Behçet disease [83], Parkinson’s disease [84, 85], Alzheimer’s disease [86], 

Duchenne muscular dystrophy [87, 88], Fabry disease [89], atherosclerosis [90] and 

stroke and ischemic injury [91-93]. In addition, MSI has been used to study bio-implant 

interfaces [94, 95] and drug distribution within tissues [96-101].  

The spectral dimension of MSI data can be very large (e.g. tens of thousands of 

m/z values), making computational analysis essential to interpretation. Thus, it is critical 

to identify and to develop effective analytical methods for large-scale data mining and 

pattern recognition to effectively utilize MSI data. I have discussed the current state-of-

the-art in MSI analysis techniques, including dimensionality reduction (e.g., principal 
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component analysis), clustering, and classification, in [102], but this content is outside 

the scope of this dissertation.  

2.3. Binary Hypergeometric Similarity Measure  

 In this section, a binary similarity measure is proposed and developed, using the 

hypergeometric distribution and Fisher’s exact test as a basis. The hypergeometric 

distribution has previously been used in bioinformatics to assess similarity in microarray 

functional analysis and tandem mass spectrometry [103-105]. The proposed 

hypergeometric similarity measure is compared with cosine similarity and Pearson 

correlation in terms of desirable properties related to formulation and behavior. Cosine 

similarity and Pearson have previously been used to assess similarity in mass 

spectrometry data for tasks ranging from protein identification to quality control [106-

110]. The performance of the proposed similarity measure on synthetic data and 

experimental MSI data is studied, and examples are provided to demonstrate its 

advantageous performance in identifying and ranking similarities.  

 

Desirable Properties of a Similarity Measure 

 The proposed similarity measure should sufficiently meet the following properties 

related to design and performance. The similarity measure should (1) be monotonically 

increasing between [-1, 1], in order to facilitate interpretation and comparison with other 

measures; (2) have good power of discrimination, i.e., should identify differences where 

they exist; (3) be consistently defined, i.e., there should not be sets of valid (observable) 

inputs for which the similarity measure output is undefined, and valid inputs should 

utilize the full dynamic range of the output. 
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Definition of Similarity Measure 

Consider a dataset consisting of i = 1, 2 … m vectors      . The reference 

vector    contains n1 dimensions with intensities greater than a selected threshold. When 

converted to binary form with respect to some threshold, this vector will have n1 ‘on’ 

dimensions and N - n1 ‘off’ dimensions, which can be represented ‘1’ and ‘0’, 

respectively. A second, query vector    has n2 ‘on’ dimensions. The total number of 

dimensions at which both images are ‘on’ is k. The significance of overlap can be defined 

in terms of the probability of observing k given N, n1, and n2. If k of the n1 dimensions 

from the first vector overlap k of the n2 dimensions from the second vector, those k 

dimensions in the first vector may be arranged in (  
 
) ways. In the second vector, the    

(n2 - k) dimensions which do not overlap may be arranged in (    
    

) ways. Thus, the total 

number of ways in which an overlap of k dimensions can occur, given n1, n2 and N, 

is (  
 
) (    

    
). When divided by the number of ways in which the n2 ‘on’ dimensions in 

the second vector could be arranged if k of them were not constrained, this becomes the 

pmf of the hypergeometric distribution. I propose a similarity measure h(k,n1,n2,N) which 

is defined, for any valid k, as the difference between the lower and upper “tails” of the 

hypergeometric distribution, as shown in equation (2.1).  
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The cumulative distribution function (cdf) of the hypergeometric distribution has 

previously been utilized as a similarity measure [111]. Since the population is discrete, 

additional information about k may be obtained by considering the probability of 

observing overlap at least as extreme. Both of these quantities can be considered p-values 

of hypothesis tests. In both cases, the null hypothesis H0 is that the observed overlap 

occurred by chance. This is described by the urn model, in which an urn contains marbles 

of two colors, one representing a pair of overlapping ‘on’ pixels and the other 

representing non-overlap. When n2 marbles are drawn from the urn without replacement 

and k of them are of the color representing overlap, the null hypothesis states that this has 

occurred by chance. The alternative hypotheses are that the observed overlaps are, 

respectively, larger or smaller than would be expected to occur at random for such an 

image pair. This implies that the images may be related, i.e., notably similar or dissimilar. 

Through the difference between these two probabilities, the proposed measure provides a 

scaled description of the unexpectedness of any observed overlap. The “tails” of the 

hypergeometric distribution also have upper bounds [112, 113]. For some parameter sets 

tested, the value of the hypergeometric pmf may be so small as to encounter machine 

resolution limits. Then, the proposed similarity measure may be implemented in terms of 

the upper bounds, as shown in equation (2.2).  
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Similarity Measure Comparison and Assessment 

First, the cosine similarity and Pearson correlation for binary vectors are 

expressed with the same variables as the hypergeometric pmf, allowing direct comparison 

of their formulae. Similarities and differences among the measures may be observed 

through their formulae; the binary expressions for cosine similarity and Pearson 

correlation are shown in equations (2.3) and (2.4). These are derived by noting that for 

binary vectors V1 and V2, the dot product is equivalent to k, and the norms to √   and 

√  . Equation (2.4) is equivalent to Matthews correlation coefficient (MCC) [111, 114]. 
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Performance on Synthetic and MSI Data 

First, considering the mathematical expressions for each similarity measure, both 

cosine similarity and Pearson correlation are both linear with respect to k, and behave 

nonlinearly with respect to n1 and n2. Cosine similarity is independent of N, while mean-

centering in Pearson correlation brings N into consideration. Pearson correlation 

asymptotically approaches cosine similarity for large N. The proposed measure, like 

Pearson correlation, considers N, but like cosine similarity, does not mean-center the 

data. Unlike both, it considers how unlikely it is to observe k by chance. 

 



www.manaraa.com

19 

 

 
Figure 2.2: Hypergeometric similarity measure (solid), cosine similarity (dot) 

and Pearson correlation (dash) for N = 100, n1 = n2 = 50. 

 

Second, the proposed similarity measure is compared with the cosine similarity 

and Pearson correlation by evaluating their output for binary image pairs having varying 

degrees of overlap. Figure 2.2 demonstrates that the proposed similarity measure satisfies 

criterion (1) regarding the desired properties of monotonicity and range. The 

hypergeometric similarity measure and Pearson correlation share a range of [-1, 1], while 

for positive data the range of cosine similarity is [0, 1]. The extremes of the 

hypergeometric similarity measure represent the limits of observable overlap k for a 

given parameter set N, n1 and n2. 

Third, a synthetic dataset of binary vectors (images) with dimension N = 10 was 

created by considering all combinations of n2, n1 and k such that N ≥ n2 ≥ n1 ≥ k, and such 

that k is greater than or equal to its minimum for any given n1, n2 and N (i.e., k ≥ n1 + n – 

N). This dataset consists of 150 vector pairs. The three similarity measures were  
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Pearson correlation Cosine similarity Hypergeometric similarity measure 

Figure 2.3: Vector pair description (l) and corresponding similarity measure score (r). Color 

coding for the vector pair segments is as follows. Dark gray: k, number of overlapping ‘on’ 

pixels. Black: n1 - k, number of non-overlapping ‘on’ pixels in image 1. Light gray: n2 - k, 

number of non-overlapping ‘on’ pixels in image 2. White: N - n1 - n2 + k, total number of 

‘off’ pixels. All vectors have length N = 10. 

 

evaluated for each pair, and their outputs compared in terms of relative rankings. Figure 

2.3 shows the performance of the similarity measures over the synthetic dataset. 

The rankings show that the proposed similarity measure fulfills criterion (2), 

which addresses discrimination of differing cases. In particular, I examine the extreme 

cases of (a) no overlap, (b) complete overlap and (c) ‘unsurprising’ overlap. (a) Cosine 

similarity assigns 0 to all vector pairs with no overlap; a large segment of the dataset is so 

labeled with no additional sorting. Pearson correlation and the proposed similarity 

measure both sort this subset of vectors. However, only the proposed similarity measure 

recognizes that k = 0 is more surprising when n1 approaches n2, because there is more 

opportunity for at least some overlap. (b) The treatment of cases with complete overlap (k 

= n1 = n2) is also favorable with the proposed similarity measure because it orders them 

in a meaningful manner. It identifies k = 5 as the most ‘surprising’ case of complete  
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Figure 2.4: Fraction agreement between similarity measure and manual m/z selections 

across percentile-based binarization thresholds. 

 

overlap, since there are the most opportunities for non-overlap to occur. The probability 

that k = n1 = n2 = 5 is equal to (
 

  

 

 

 

 

 

 

 

 
). It also recognizes that k = 6 and k = 4 are 

equally ‘surprising’, since the probability of arranging n2 = 6 pixels to completely overlap 

n1 = 6 pixels is the same as arranging (N – n2) = 4 pixels to completely overlap (N – n1) = 

4 pixels. The same pairings are observed for k = 7 and k = 3, and k = 8 and k = 2. In 

contrast, both cosine similarity and Pearson correlation assign 1 to this entire subset of 

vectors without further sorting. (c) The proposed similarity measure also meets criterion 

(3) regarding definition over the parameter space.  Pearson correlation is not defined for 

vector pairs in which n1 = N or n2 = N; this is evident from equation (4). The proposed 

similarity measure assigns 0 to these cases, because by definition, k = n1. Thus, even 

though complete overlap occurs, it is not unexpected.   
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Fourth, the similarity measures were implemented on a biological MSI dataset. 

Although HNSCC tissue has previously been assessed using MSI [73], such data is 

currently not available to me for analysis. Instead, MSI data from a mouse model of Tay-

Sachs/Sandhoff disease was used to test the similarity measure. Since general data 

characteristics for particular types of MSI data (e.g., MALDI, DESI, etc.) are expected to 

be similar regardless of the target tissue, it is reasonable to extrapolate conclusions to 

future performance on HNSCC MSI data. The experimental protocol for the MSI dataset 

investigated here is described in [82]. The image corresponding to m/z 890 was selected 

as a reference to due to its distinctive spatial pattern. The MSI dataset has a spectral 

dimension of 4,438 m/z values. It was manually inspected in non-binary mode to identify 

m/z values with similar spatial patterns; 47 m/z images were selected. The top 47 values 

selected by each similarity measure were compared to these values. The correspondence 

of the two lists was calculated for each similarity measure, and repeated for 11 alternative 

binarization thresholds. The upper bounds formulation shown in equation (2.2) used in 

this assessment due to the large variable values involved.  

Figure 2.4 describes similarity measure performance, assessed as the fraction 

agreement between the top m/z values selected by each similarity measure and the 

manual selections. This comparison was carried out across multiple binarization 

thresholds based on the abundance percentiles of the mean spectrum. For this dataset, the 

90
th

 percentile yields top selections from the similarity measures which correspond most 

closely to the manual selections. The selections of the proposed measure and Pearson 

correlation correspond highly with the manual selections, and also with each other. The 
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selections of cosine similarity consistently differed from the other two, and from the 

manual selections.  

 

Discussion and Limitations of Binary Approach 

In summary, a hypergeometric similarity measure is proposed as a tool for the 

exploration and analysis of biomedical data. Due to its definition as the difference 

between the upper and lower “tails” of the hypergeometric distribution, the proposed 

similarity measure explicitly defines the unexpectedness of any observed overlap. Using 

synthetic data, the proposed similarity measure was compared with cosine similarity and 

Pearson correlation in terms of three criteria related to design and performance, and it 

was shown to perform favorably. Tests on a biological, non-HNSCC MSI dataset showed 

that the proposed similarity measure is effective in identifying visually notable spatial 

similarities. Together, these results indicate that the proposed similarity measure can play 

a useful role in assessing similarity in biomedical data.  

However, several caveats remain. First and foremost, abundance is a key feature 

of biological data, and analyzing binary data ignores this information. In the MSI dataset 

examined here, analysis of binarized data still revealed informative patterns. However, 

for some HNSCC datasets, retaining abundance information may be necessary for 

meaningful analyses. The flexibility to accommodate abundance to some extent is 

particularly important for the goal of developing a general similarity measure that 

provides useful output for multiple HNSCC –omic data types. Second, if binary data is to 

be used, the selection of appropriate thresholds to convert non-binary data to binary data 

is an open problem. Many alternative methods for thresholding images have been 
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proposed in image processing [115]. Results on this particular biological dataset indicated 

that increasing the threshold can increase agreement with the set of manually selected m/z 

values. However, the potential effects of inter-dataset variation on the performance of all 

three similarity measures have not yet been studied. That investigation would provide 

more insight into threshold effects and lead to more systematic recommendations for 

specific data types.  

Instead, the next section in this chapter addresses this issue directly, by modifying 

the similarity measure to explicitly incorporate abundance.  
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2.4. Multivariate Hypergeometric Similarity Measure  

In this section, the previous result is extended to present a general similarity 

measure that accommodates the comparison of non-binary, “multi-class” data. After 

defining the proposed multivariate hypergeometric similarity measure, I describe several 

tests using synthetic and biological data to investigate its performance. First, its patterns 

of sample ranking are again compared with those of cosine similarity and Pearson 

correlation, as well as with mutual information. These three similarity measures are used 

in the analysis of many types of biomedical data [62-65, 116]. Next, an algorithm called 

piecewise approximation, which facilitates the application of the proposed similarity 

measure to large samples, is developed and implemented. 

 

Definition of Similarity Measure 

Consider a dataset consisting of z = 1, 2 … m vectors      , with all intensities 

quantized into n bins, where N and n are positive integers. When comparing two such 

vectors, there are n
2
 possible types of overlap between corresponding dimensions (i.e., in 

images, for spatially corresponding pixels). These overlaps can be represented as an 

    contingency table, as shown in Figure 2.5. Each class kij, for indices i = 1...n and j 

= 1...n, represents the number of corresponding dimensions which are in bin i in the first 

(“reference”) vector and in bin j in the second (“query”) vector. The terminology is used 

in the sense that a given sample of interest would be selected as a “reference” and other 

samples in a dataset would be compared, or “queried” against it to find samples similar to 

the reference. The margins of the contingency table are fixed for a given pair of images: 

for each row i, ∑    
 
       ,  the number of pixels in bin i in the reference image, and  
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Figure 2.5: An image pair (reference and query images) with pixels intensities binned 

into three levels is represented as a 3 3 contingency table with fixed marginal totals. 

 

similarly for each column j, ∑    
 
       , the number of pixels in bin j in the query 

image. By definition, ∑         . The probability of observing a particular distribution 

of overlaps kij, i.e., the probability of observing a given contingency table, can be 

represented as the product of probability mass functions of the multivariate 

hypergeometric distribution. Considering only the first column of an n   n contingency 

table with row marginal totals ri, the column sum is q1 = k11 + k21 + . . . kn1. Each 

component ki1 is drawn from its row sum ri. Since each draw is independent, the 

probability of observing a particular distribution of pixels is given as 
(
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) (
  
   

)
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)
. This 

quantity is a probability mass function of the multivariate hypergeometric distribution. 

The probability of observing the second column is described similarly, but accounts for 

the pixels already assigned in the previous column: 
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pattern is followed through the (n – 1)
th

 column. Because the row and column sums are 

fixed, the configuration of the n
th

 column is determined by the preceding columns. Since 

the configuration of the available dimensions in each column (aside from the n
th

 column) 

is independent of the other columns, the probability p of the complete n × n contingency 

table is given by the product of the column probabilities. This quantity, shown in 

equation (2.5), is known as the probability for k-variate contingency tables [117, 118]. 

Here  q  =  [ q 1 ,  q 2  … q n ] ,  r  = [ r 1 ,  r 2  … r n ]  and  k  = [k 1 1 ,  k 1 2  . . .  k n n ] . 

         
∏     ∏    

 
   

 
   

    ∏       
 (2.5) 

In previous work focusing on binary data, the similarity measure was defined 

based on the hypergeometric distribution; the probability mass function of this 

distribution gives the probability of a 2   2 contingency table [119]. The similarity 

measure was defined as the difference between the lower and upper “tails” of the 

hypergeometric distribution defined by the marginal totals r and q. The values of r and q 

are a function of the particular reference image and query image being compared. The 

“tails” were defined with respect to the observed overlap, which was defined as the 

number of spatially corresponding pixels which are ‘on’ in both images, i.e., k11 in this 

terminology. To extend this approach from the two classes in binary data to n classes, I 

utilized the probability mass function of the n × n contingency table.     

The statistical significance of a contingency table is evaluated by performing 

Fisher’s exact test (in the binary case) or the Fisher-Freeman-Halton test (in the general 

case) [117, 120]. In both cases, the isomarginal family of tables (i.e. those tables having 

the same fixed margins r and q as the original table representing the reference and query 

image pair) is first generated, and the probability of each table within this family is 
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calculated. In the binary case, the hypergeometric distribution describes the isomarginal 

family. For each table in the isomarginal family, the value of a chosen statistic S(k) is 

compared to that of the original table. With respect to S(k), tables in the isomarginal 

family may be more extreme than the original table in two directions. The set of tables 

which are “more extremely large” have a larger than or equal value of the statistic, while 

the set of tables which are “more extremely small” have a smaller than or equal value of 

the statistic. The significance of a table in a particular direction is found by summing the 

probabilities of all tables within the respective set.  

In the binary case, the choice of the statistic S(k) is straightforward because due to 

the fixed margins, there is only one degree of freedom. S(k) = k11 completely defines the 

table, and is reasonable because more similar images will have greater numbers of 

overlapping pixels. In the general case, however, there are n
2
 – 2n + 1 degrees of 

freedom, and for n > 2, the choice of a statistic is not obvious. Here, I choose a vector of 

statistics – the set of diagonal elements of the n   n table – as S(k), as shown in equation 

(2). These diagonal elements represent the exact matches – the spatially corresponding 

pixels in the reference and query images which are in the same class. While S(k) may be 

defined in many alternative ways, I propose equation (2.6) as a reasonable choice for 

multi-class data because images which are more similar will have a greater number of 

each of the n types of exact matches. 

     [             ] (2.6) 

 

For each table in the isomarginal family, I performed an index-wise comparison 

of each diagonal element to the corresponding diagonal element in the original table. In 

other words, I compared each element in S(k) with the corresponding element in S0, 
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which is the instance of S(k) observed for the original table. If each diagonal element in 

the table is greater than or equal to its corresponding element in S0, the table is assigned to 

set G, the set of “more extremely large” tables with respect to all elements of S(k). If each 

diagonal elements is less than or equal to its corresponding element in S0, the table is 

assigned to set L, the set of “more extremely small” tables. Equation (2.7) defines the 

proposed multivariate hypergeometric similarity measure h in terms of the probabilities 

of the tables in these two sets. 

  ∑        

 

  ∑        

 

 (2.7) 

 

Comparison of Similarity Measures 

The sample rankings obtained from the proposed measure are compared with 

those from cosine similarity, Pearson correlation, and mutual information. Cosine 

similarity and Pearson correlation are defined for vectors V1 and V2 in equations (2.8) and 

(2.9), respectively. Mutual information is defined in (2.10), where xi and yj are the 

elements of V1 and V2, respectively. 

      

‖  ‖‖  ‖
 (2.8) 
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(2.9) 
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 Design of Synthetic Dataset 

First, the performance of the multivariate hypergeometric similarity measure is 

evaluated on synthetic data. While the proposed similarity measure is defined for any n ≥ 

2 classes, these synthetic experiments are performed using only three classes to clearly 

illustrate the method. Two synthetic datasets are used for this comparison. The first 

consists of the three-class isomarginal family defined by marginal totals (r1, r2, r3, q1, q2, 

q3) = (5, 5, 5, 5, 5, 5) and N = 15. The second consists of all three-class tables with N = 5.  

2.4.1. Piecewise Approximation 

Testing the significance of n × n contingency tables obtained from biomedical 

data, such as MSI data, poses a challenge due to data size. As the numbers of pixels in the 

images, and hence the marginal totals, increase, generating the isomarginal family of 

tables to perform the Fisher-Freeman-Halton test becomes demanding. The number of 

possible tables increases factorially as the numbers of rows, columns or total pixels 

increase [121, 122].  As an analytical example, the number of three-class contingency 

tables where all rows and columns sum to r is given by (   
 

)   (   
 

) [123, 124]. When 

faced with a very large number of tables to enumerate in the isomarginal family, 

approximate solutions can be found through Monte Carlo testing [120]. However, in 

practice this may demand very large numbers of permutations to achieve satisfactory 

separation of similarity rankings. 

Here I propose a piecewise method of approximation, in which the two images or 

data vectors to be compared are divided into a number of smaller subsections. The 

motivating idea is that similar samples will also have similar corresponding subsections.  
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Figure 2.6: Overview of piecewise approximation process: subsection (1.) corresponds to 

the top-left 4x4 blocks of the reference and query images; (2.) to the 4x4 blocks to the 

immediate right of (1.); and (n.) to the bottom-right 4x4 blocks. The similarity is 

calculated for each spatially corresponding reference and query section, and the overall 

similarity of the reference and query is calculated as a function of the sub-section scores. 

 

For each pair of reference and query subsections, an n × n contingency table is 

constructed and the multivariate hypergeometric similarity measure is calculated. The 

overall similarity of the image pair is computed as a function of the similarities of all 

subsections. Figure 2.6 illustrates this process.  

Piecewise approximation requires choices in how images or data vectors are 

separated into subsections (e.g., different subsection sizes) and how the similarity scores 

for the subsections are combined to obtain an overall similarity score for the image pair 

(e.g., different functions). Alternative choices are examined here through experiments on 

synthetic and biomedical data. First, the previously described synthetic dataset (for N = 

15) is used to examine whether there is a pattern between subsection size and the extent 

of difference observed between the piecewise approximation rankings and the exact 

rankings. In this test, the rankings for each sample obtained by using subsections of size 
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3, 4 and 5 pixels are compared with the ranking calculated using the whole sample. To 

avoid the comparison of single-pixel sections, if the sample is not evenly divisible at a 

particular increment size, the remainder pixels are added to the previous subsection to 

create one subsection larger than the others. In the same experiment, the effect of 

permuting the reference and query samples which correspond to a single n × n table is 

considered. While a given pair of samples yields a single n × n table, mapping a given 

table back to the sample space yields non-unique indexing of spatially corresponding 

pixels. This type of indexing difference would not affect the similarity score of a given 

reference and query pair if the whole sample is utilized. However, when piecewise 

approximation is employed, different subsections may contain different proportions of 

the pixels for each type of overlap kij. To examine how this may affect results, the 

‘randperm’ function in MATLAB was used to generate a permutation of the sample 

indices, which was applied to both the reference and query samples before they were 

divided into subsections. This was repeated 10,000 times. The purpose of this step is to 

confirm that overall sample rankings in the synthetic dataset are not an artifact of 

arbitrary methods of generating synthetic samples from tables and subsectioning samples. 

For each subsection size, the sample ranking results shown are the mean across all 

permutations. Next, biomedical data was used to empirically compare alternative 

functions for aggregating the subsection similarity scores into an overall score for the 

image pair.  

2.4.2. Performance on Synthetic Data 

This section describes two sets of results. First, the performance of the proposed 

multivariate hypergeometric similarity measure is compared with the other similarity 



www.manaraa.com

33 

 

measures using synthetic data. Second, the effects of subsection size and combination 

functions on the piecewise approximation method are investigated using synthetic and 

experimental MSI data.  

In the first set of results, the rankings of samples in synthetic datasets by the three 

similarity measures are compared in Figures 2.7 and 2.8. Each sample (horizontal bar) 

 

Pearson correlation Cosine similarity Mutual 

information 

Hypergeometric 

similarity measure 

 

Figure 2.7: Comparison of sample rankings by the four similarity measures for the synthetic 

dataset comprising the isomarginal family given by (r1, r2, r3, q1, q2, q3) = (5, 5, 5, 5, 5, 5). Each 

sample (horizontal bar) represents a certain number of exact matches, slight mismatches and 

large mismatches (corresponding to [green, yellow, red], or [medium, light and dark] in 

grayscale). The length of each color segment corresponds to the number of that type of match in 

the sample. For each similarity measure, the similarity score corresponding to each sample is 

shown on the right panel. 
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represents a single table, with the green, yellow and red segments representing the 

number of exact matches (k11 + k22 + k33), slight mismatches (k12 + k21 + k23 + k32) and 

large mismatches (k13 + k31), respectively. In Figure 2.7, there are 231 tables represented; 

these tables comprise the isomarginal family defined by marginal totals (r1, r2, r3, q1, q2, 

q3) = (5, 5, 5, 5, 5, 5).  

All three similarity measures agree in that the highest score is assigned to the 

table with the largest number of exact matches. None of the similarity measures are 

monotonic with respect to the number of exact matches, but rankings from the proposed 

similarity measure are much closer to this trend than rankings from cosine similarity and 

Pearson correlation. Cosine similarity and Pearson correlation more closely sort by the 

number of large mismatches. For a single isomarginal family, the magnitudes and means 

of the two vectors are constant. The rankings of cosine similarity and Pearson correlation 

therefore depend on the value of the dot product, and the minimum dot product is 

observed when the number of large mismatches is maximized. The proposed similarity 

measure does not provide such distinction between slight and large mismatches, but it 

does provide a probabilistic interpretation which cosine similarity and Pearson correlation 

do not: the samples associated with extreme scores are the most “surprising” patterns of 

overlap observed.  Mutual information assigns higher scores to cases where most pixels 

are concentrated in a few classes, but does not differentiate among the classes. For 

example, the tables with [k11, k22, k33] = [5,5,5] (i.e., all exact matches) and [k31, k22, k13] 

= [5,5,5] (i.e., many large mismatches) both receive equally high scores; as a result, the 

mutual information results do not show any trend with respect to exact matches, slight 

mismatches or large mismatches. In contrast, [k11, k22, k33] = [5,5,5] is ranked highly by 
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the proposed similarity measure, while [k31, k22, k13] =  [5,5,5] receives a much lower 

score. 

Figure 2.8 considers the rankings of the 1287 tables generated by considering 

every possible combination of marginal totals such that (r1 + r2 + r3 = 5) and (q1 + q2 + q3 

= 5). Again, all of the measures agree in that the highest score is assigned to the table 

with the largest number of exact matches, but the proposed similarity measure more 

consistently assigns lower scores to tables with fewer exact matches. The rankings in this 

 

Pearson correlation Cosine similarity Mutual information Hypergeometric 

similarity measure 

Figure 2.8: Comparison of sample rankings by the four similarity measures for the synthetic 

dataset containing all tables for N = 5. Each sample (horizontal bar) contains a certain number 

of exact matches, slight mismatches and large mismatches (corresponding to [green, yellow, 

red], or [medium, light and dark] in grayscale). The length of each color segment corresponds 

to the number of that type of match in the sample. For each similarity measure, the similarity 

score for each sample is shown on the right panel. 
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set of all tables for N = 5 illustrate additional probabilistic aspects of the proposed 

similarity measure. For example, the proposed measure can distinguish between instances 

of overlap with different distribution magnitudes. It assigns identical scores to the set of 

tables with [k11, k22, k33] as [3,1,1], [1,3,1] and [1,1,3], and a different identical score to 

the other possible set of tables describing only exact overlap, with [k11, k22, k33] as 

[2,2,1], [2,1,2] and [1,2,2]. Pearson correlation and cosine similarity do not distinguish 

between these two sets of tables. Mutual information distinguishes the two sets of tables, 

but again does not distinguish between case cases of exact matches and many large 

mismatches; for example, the cases where [k11, k22, k33] = [3,1,1] and [k31, k22, k13] = 

[3,1,1] are assigned the same score, and [k11, k22, k33] = [2,2,1] and [k31, k22, k13] = [2,1,2] 

are assigned the same score. For a second example, in the proposed measure, all tables 

which have marginal totals such that only one n   n table is possible are mapped to a 

score of zero. If only one set of overlaps kij can be observed for a particular pair of 

images or data vectors, then the overlap which is observed can be considered inherently 

“unsurprising.” In contrast, this set of tables is undefined for Pearson correlation (i.e., 

these tables are assigned the value NaN, as shown at the top of the Pearson correlation 

plot in Figure 2.8). Cosine similarity does not group these tables together or otherwise 

distinguish them. 

In the second set of results, the effects of subsection size on the piecewise 

approximation result are described in Figure 2.9. The 231 samples in the synthetic dataset 

shown in Figure 2.7 are plotted in order of increasing exact score. The piecewise 

approximation scores for each sample, across increments of size 3, 4 and 5, are 

compared. For all three subsection sizes, the mean score from 10,000 permutations of the 
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Figure 2.9: The mean rankings of synthetic samples using piecewise approximation at 

different subsection sizes (size 3: blue dash-dot line; size 4: green dotted line; size 5: red 

dashed line) compared to rankings from using the whole sample (black, solid line). 

 

reference and query vectors is shown. Overall, the piecewise approximation scores follow 

the trend of the exact score, but there are notable deviations. In such cases, samples are 

ranked higher or lower as an artifact of the piecewise sectioning process. Interestingly, 

these cases tend to correspond across all of the subsection sizes; if a sample was scored 

much higher or lower than its adjacent samples by the piecewise method, the same jump 

or dip in score was observed across all three subsection sizes. However, the magnitudes 

of the piecewise scores indicate that, as expected, larger sections give scores closer to the 

exact result.  

Next, different statistics for combining the similarity scores of subsections into a 

single overall score for the sample pair are compared empirically, using MSI data with a  
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Figure 2.10: Empirical comparison of alternative functions for combining subsection 

similarity scores into an overall similarity score through piecewise approximation. Each 

dot on the scatter plot represents one query image (m/z value); 4,438 are in the dataset. 

The value (image pair score) of the dot represents the similarity score assigned to the 

query image based on the specified function of its subsection scores. For example, in the 

‘mean’ plot, the image pair score of each query image is the average similarity score of 

its subsections. 

 

subsection size of 4 4 pixels for piecewise approximation. Figure 2.10 shows the image 

pair similarity scores for each of the 4,438 m/z values, computed as the mean, median, 

mode, variance, skewness or kurtosis of all of their subsection scores. The x-axis of these 

plots, showing indices 1 through 4,438, represents the query m/z images; each is 

associated with a single score (dot) on the y-axis. This score is obtained by evaluating the 

specified function (e.g., the mean) over the set of subsection scores obtained for that 

query image when it was compared to the reference image. To interpret these results, it is 

necessary to consider that the reference m/z image corresponds to index 783. Since the 

most similar image in the dataset to the reference image should be the reference image 

itself, a well-performing function should assign the most extreme score to this index. This 
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result is observed for the mean, median, variance and kurtosis functions. During previous 

study of this dataset for the binary measure, 47 of the 4,438 images were observed to be 

qualitatively very similar to the reference m/z image, and those images were observed to 

be associated with indices relatively close to the reference index [119]. In contrast, lower 

indices were associated with noisy images (an artifact of MALDI MSI data acquisition), 

and higher indices with sparse images. A well-performing function would therefore 

exhibit a peak centered at the reference index of 783. The mean and kurtosis both show 

this feature by assigning extreme (higher and lower than most others, respectively) scores 

to indices close to the reference index. 

2.5. Case Studies 

Two HNSCC datasets were examined in this study. The first was a gene 

expression microarray dataset consisting of 25 cancer patient samples. This dataset was 

obtained from the ArrayExpress repository (ID: E-GEOD-6791), and is described in 

[125]. This study used the Affymetrix Human Genome U133 Plus 2.0 array platform, 

which contains 54,675 probes. To obtain gene expression values, raw .CEL files were 

processed with the robust multi-array average (RMA) algorithm in the Affymetrix 

Expression Console software. The second was a protein expression dataset consisting of 

reverse phase protein array (RPPA) data available from The Cancer Proteome Atlas 

[126]. This dataset consisted of 212 cancer patient samples and described the expression 

of 187 proteins. For both of these datasets, EGFR (which is up-regulated in more than 

80% of HNSCC) was used as the reference gene and protein, respectively.  

In order to (1) further investigate the generality of the similarity measure 

performance, (2) test a metabolomics (lipidomics) dataset, and (3) provide an easy-to-
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interpret visual representation of performance, an MSI dataset was also investigated. This 

was the same experimental MSI data used previously, from a mouse model of Tay-

Sachs/Sandhoff disease, and used to profile different lipid species in the brain [82]. The 

image corresponding to m/z 889.6 (located at index 783 within the dataset) was again 

selected as the reference image due to its distinctive spatial pattern. The MSI data has a 

spectral dimension of 4,438 m/z values, and all m/z images were tested as query images 

against the reference image of m/z 889.6.  

For all of these datasets, the three-class cases were used for the experiments. 

Feature (gene, protein, m/z)-specific, percentile-based threshold pairs (x, y) were used to 

bin each expression value into “high” (> y), “medium” (x < and ≤ y) or “low” (≤ x) 

classes. For the gene and protein expression datasets, results from several alternative 

threshold pairs were compared. For the MSI dataset, the upper threshold y was arbitrarily 

selected as the 50
th

 percentile of the mean spectrum of the dataset, and the lower 

threshold x was 0. The piecewise approximation approach was used in all cases. For the 

gene and protein expression datasets, the primary subsection size was fixed at 10 

features. In the MSI dataset, a primary subsection size of 4 4 was chosen after testing 

several sizes in an effort to balance section size and computational time. The proposed 

similarity measure score was calculated for each subsection. For the gene and protein 

expression datasets, the average score across subsections was taken as the overall 

similarity for the feature pair. For the MSI data, two functions (the mean and kurtosis) for 

combining subsection scores into an aggregate image pair score were compared. Finally, 

for all datasets, the top features selected by the proposed similarity measure using three 
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classes were compared to the top three-class results for cosine similarity, Pearson 

correlation and mutual information. 

2.5.1. Gene Expression 

Tables 2.1-2.3 show the top 20 gene rankings for each of the similarity measures 

for a single EGFR reference probe across three alternative percentile-based thresholds. 

First, for all cases, the reference probe ‘211550_at’ is selected as the most similar, as it 

should be. Second, this set of results demonstrates that the multivariate hypergeometric 

similarity measure is successful in identifying genes which are associated with head and 

neck cancer. Moreover, across the three alternative thresholds considered, the proposed 

similarity measure identified 41 probes that were not in the top 20 rankings of the other 

similarity measures. Among these, 15 genes have been associated with head and neck 

cancer in recent studies: STX6 [127], BCL2L2 [128], RGS20 [129],  SSSCA1 [130, 131], 

EHD2 [132], SYNPO2L [133], CNR2 [134], HCRP1 [135], CSNK1G2 [136, 137], 

EFNB1 [138], SH3GL2 [139], KRT31 [140], FKBP1A [141], SLC7A8 [142], and 

BCL2L14 [143]. In addition, HIBADH [144] and DSG1 [145] have been associated with 

head and neck cancer on the protein level.  

These results also emphasize the value of integrating multiple forms of analysis in 

order to leverage complementary findings. One option is combining the results from 

alternative similarity measures. In addition, the benefits of examining a single dataset 

across alternative thresholds can be clearly observed through the notably different gene 

lists for each measure in Tables 2.1-2.3. Parallel assessments with different probes for the 

same gene are also important. For example, the top 20 rankings by the multivariate 

hypergeometric similarity measure for another EGFR probe gave relevant results such as 
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ITGBL1 [146] and TMCC1 [147]. Overall, these observations indicate that applying the 

multivariate hypergeometric similarity measure can yield relevant and useful results.  

 

Table 2.1: Top 20 rankings by similarity measures on head and neck cancer microarray 

data, using percentiles [25, 50] as thresholds 
Multivariate 

hypergeometric similarity 

measure 

Pearson correlation Cosine similarity Mutual information 

Probe Gene Probe Gene Probe Gene Probe Gene 

211550_at EGFR 211550_at EGFR 211550_at EGFR 211550_at EGFR 

202264_s_

at 
TOMM40 

211716_x_

at 
ARHGDIA 

211716_x_

at 
ARHGDIA 

211716_x_a

t 

ARHGDI

A 

1555140_

a_at 
BCL2L2 

203411_s_

at 
LMNA 

203411_s_

at 
LMNA 

203411_s_a

t 
LMNA 

216293_at CLTA 212103_at 

KPNA6 /// 

LOC1006528

28 /// 

LOC1006533

35 

212103_at 

KPNA6 /// 

LOC1006528

28 /// 

LOC1006533

35 

219764_at FZD10 

203256_at CDH3 
210128_s_

at 
LTB4R 

1554097_a

_at 
MIR31HG 

1555020_a_

at 

ARHGAP

20 

243313_at SYNPO2L 
1554097_a

_at 
MIR31HG 1555183_at TERF2 231960_at BRWD1 

212127_at RANGAP1 206642_at DSG1 206642_at DSG1 
1566178_x

_at 
--- 

1559946_s

_at 
RUVBL2 

210527_x_

at 

TUBA3C /// 

TUBA3D 

209873_s_

at 
PKP3 

220624_s_a

t 
ELF5 

203114_at SSSCA1 
214564_s_

at 
PCDHGC3 

210128_s_

at 
LTB4R 

222834_s_a

t 
GNG12 

201415_at GSS 221001_at --- 
210527_x_

at 

TUBA3C /// 

TUBA3D 
237394_at --- 

224314_s_

at 
EGLN1 

230704_s_

at 
ITGB4 

214564_s_

at 
PCDHGC3 242832_at PER1 

1552618_

at 
STX6 234743_at LIMD1 218727_at SLC38A7 219560_at C22orf29 

200815_s_

at 

PAFAH1B

1 

242211_x_

at 
WDR90 221001_at --- 

204889_s_a

t 
NEURL 

1569303_s

_at 
RGS20 

209873_s_

at 
PKP3 

221801_x_

at 
NEFL 216369_at --- 

221870_at EHD2 
221801_x_

at 
NEFL 228587_at FAM83G 220510_at RHBG 

211716_x

_at 
ARHGDIA 228587_at FAM83G 

230704_s_

at 
ITGB4 237361_at --- 

203411_s_

at 
LMNA 234894_at ITIH6 234743_at LIMD1 244233_at --- 

216060_s_

at 
DAAM1 241405_at LOC400604 234894_at ITIH6 203256_at CDH3 

206642_at DSG1 1555183_at TERF2 241405_at LOC400604 216293_at CLTA 

231955_s_

at 
HIBADH 218727_at SLC38A7 

242211_x_

at 
WDR90 

1553297_a_

at 
CSF3R 
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Table 2.2: Top 20 rankings by similarity measures on head and neck cancer microarray 

data, using percentiles [25, 75] as thresholds 
Multivariate hypergeometric 

similarity measure 
Pearson correlation Cosine similarity Mutual information 

Probe Gene Probe Gene Probe Gene Probe Gene 

211550_at EGFR 211550_at EGFR 211550_at EGFR 211550_at EGFR 

234591_at --- 
1558378_a

_at 
AHNAK2 

1558378_a_

at 
AHNAK2 209169_at GPM6B 

222834_s_a

t 
GNG12 

204996_s_

at 
CDK5R1 

204996_s_a

t 
CDK5R1 209505_at NR2F1 

220624_s_a

t 
ELF5 206447_at 

CELA2A 

/// 

CELA2B 

206447_at 
CELA2A /// 

CELA2B 

208803_s_

at 
SRP72 

233918_at DCDC2B 234591_at --- 234591_at --- 227772_at LATS1 

1558378_a_

at 
AHNAK2 

201183_s_

at 
CHD4 

201183_s_a

t 
CHD4 

201893_x_

at 
DCN 

216176_at HCRP1 
222834_s_

at 
GNG12 

220624_s_a

t 
ELF5 203685_at BCL2 

220365_at ALLC 233918_at DCDC2B 
222834_s_a

t 
GNG12 

203822_s_

at 
ELF2 

234749_s_a

t 
POC1A 

220624_s_

at 
ELF5 233918_at DCDC2B 205880_at PRKD1 

1553137_s_

at 
KLF11 

221115_s_

at 
LENEP 

1552575_a_

at 
C6orf141 

208249_s_

at 
TGDS 

1559205_s_

at 
--- 

1552575_a

_at 
C6orf141 

1553137_s_

at 
KLF11 

208990_s_

at 
HNRNPH3 

221115_s_a

t 
LENEP 

1559205_s

_at 
--- 1554912_at ESYT3 

211896_s_

at 
DCN 

221183_at 
LOC1005073

88 
217175_at UGT2B15 

1559075_s_

at 
BAHCC1 212462_at KAT6B 

204996_s_a

t 
CDK5R1 217308_at OR1F2P 

1559205_s_

at 
--- 213058_at TTC28 

1567068_at OR4D1 220944_at PGLYRP4 
210553_x_a

t 

LOC100507

472 /// 

PCSK6 

217954_s_

at 
PHF3 

206586_at CNR2 
221629_x_

at 
FAM203A 213445_at ZC3H3 

220624_s_

at 
ELF5 

206642_at DSG1 227672_at C8orf73 213681_at CYHR1 
222834_s_

at 
GNG12 

225500_x_a

t 
SCAF1 

232409_x_

at 
FBXL16 217175_at UGT2B15 225230_at DRAM2 

236614_at LOC729683 
1554912_a

t 
ESYT3 217308_at OR1F2P 226402_at CYP2U1 

237111_at LOC388942 
1559075_s

_at 
BAHCC1 220944_at PGLYRP4 233918_at DCDC2B 
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Table 2.3: Top 20 rankings by similarity measures on head and neck cancer microarray 

data, using percentiles [50, 75] as thresholds 
Multivariate hypergeometric 

similarity measure 
Pearson correlation Cosine similarity Mutual information 

Probe Gene Probe Gene Probe Gene Probe Gene 

211550_at EGFR 211550_at EGFR 211550_at EGFR 
211550

_at 
EGFR 

214119_s_a

t 
FKBP1A 

201183_s_a

t 
CHD4 

201183_s

_at 
CHD4 

201183

_s_at 
CHD4 

206677_at KRT31 
1559205_s_

at 
--- 

1559205_

s_at 
--- 

156131

9_at 
OTX2-AS1 

1561509_at --- 224239_at 

DEFB103A 

/// 

DEFB103B 

1570531_

at 
--- 

219764

_at 
FZD10 

205938_at PPM1E 1570531_at --- 224239_at 

DEFB103A 

/// 

DEFB103B 

231960

_at 
BRWD1 

234191_at BCL2L14 231737_at CACNG4 
1552575_

a_at 
C6orf141 

221021

_s_at 
CTNNBL1 

205341_at EHD2 217175_at UGT2B15 217175_at UGT2B15 
156163

3_at 
HMGA2 

202945_at FPGS 220021_at TMC7 220021_at TMC7 
217237

_at 
--- 

229432_at NAGS 
1552575_a_

at 
C6orf141 220944_at PGLYRP4 

221069

_s_at 
TACO1 

244258_at --- 
221629_x_a

t 
FAM203A 

221259_s

_at 
TEX11 

230810

_at 
JMJD4 

1557514_a_

at 
--- 

231243_s_a

t 
BHLHE41 

221629_x

_at 
FAM203A 

236119

_s_at 
SPRR2G 

208337_s_a

t 
NR5A2 231908_at ZDHHC18 

231243_s

_at 
BHLHE41 

157053

1_at 
--- 

233069_at PPP4R1L 232718_at LINC00589 231737_at CACNG4 
212103

_at 

KPNA6 /// 

LOC10065282

8 /// 

LOC10065333

5 

215835_at 
LOC1006531

74 
237430_at --- 231908_at ZDHHC18 

224239

_at 

DEFB103A /// 

DEFB103B 

234933_at CC2D2A 220944_at PGLYRP4 232718_at LINC00589 
237900

_at 

KLHDC4 /// 

LOC10065295

0 /// 

LOC10065321

3 

216603_at SLC7A8 244202_at --- 237430_at --- 
221812

_at 
FBXO42 

202711_at EFNB1 
221259_s_a

t 
TEX11 244202_at --- 

235748

_s_at 
--- 

202574_s_a

t 
CSNK1G2 1558871_at --- 

1558871_

at 
--- 

244258

_at 
--- 

235748_s_a

t 
--- 231295_at ME3 

1561048_

at 
RARS2 

59705_

at 
SCLY 

205751_at SH3GL2 
217234_s_a

t 
EZR 

1564022_

at 
ZNF804B 

207065

_at 
KRT75 
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2.5.2. Protein Expression 

The similarity measure results for RPPA data are shown in Tables 2.4-2.6, for 

three alternative threshold selections. For all threshold selections – and for all similarity  

 

Table 2.4: Top 20 rankings by similarity measures on head and neck cancer RPPA data, 

using percentiles [25, 50] as thresholds 

Rank 
Multivariate hypergeometric 

similarity measure 
Pearson correlation Cosine similarity Mutual information 

1 EGFR EGFR EGFR EGFR 

2 EGFR_pY1068 EGFR_pY1068 EGFR_pY1068 EGFR_pY1068 

3 E-Cadherin eEF2K eEF2K eEF2K 

4 eIF4G VHL VHL VHL 

5 VHL Akt Akt Akt 

6 HER2 p70S6K p70S6K E-Cadherin 

7 Akt beta-Catenin beta-Catenin Bap1-c-4 

8 eEF2K Tuberin Tuberin Tuberin 

9 Tuberin mTOR mTOR beta-Catenin 

10 c-Jun_pS73 E-Cadherin E-Cadherin p70S6K 

11 p70S6K ERK2 ERK2 ERK2 

12 Ku80 HER2 HER2 mTOR 

13 mTOR eIF4G eIF4G eIF4G 

14 beta-Catenin Bap1-c-4 Bap1-c-4 c-Met_pY1235 

15 PDK1_pS241 PDK1_pS241 PDK1_pS241 SF2 

16 INPP4B Chk1_pS345 Chk1_pS345 CD31 

17 c-Myc Ku80 Ku80 Bax 

18 ACC1 STAT5-alpha STAT5-alpha HER2 

19 B-Raf TSC1 TSC1 MEK1_pS217_S221 

20 ERK2 B-Raf B-Raf c-Kit 

 

Table 2.5: Top 20 rankings by similarity measures on head and neck cancer RPPA data, 

using percentiles [25, 75] as thresholds 

Rank 
Multivariate hypergeometric 

similarity measure 
Pearson correlation Cosine similarity Mutual information 

1 EGFR EGFR EGFR EGFR 

2 EGFR_pY1068 EGFR_pY1068 EGFR_pY1068 EGFR_pY1068 

3 E-Cadherin eEF2K eEF2K eEF2K 

4 eEF2K VHL VHL CD31 

5 eIF4G Chk1_pS345 Chk1_pS345 VHL 

6 mTOR eEF2 eEF2 Bcl-2 

7 Tuberin beta-Catenin beta-Catenin PDK1 

8 HER2 mTOR mTOR DJ-1 

9 VHL PDK1_pS241 PDK1_pS241 14-3-3_epsilon 

10 p70S6K Tuberin Tuberin eIF4G 

11 ERK2 HER2_pY1248 HER2_pY1248 Akt 

12 Bap1-c-4 INPP4B INPP4B PEA-15 

13 TSC1 E-Cadherin E-Cadherin Bap1-c-4 

14 Chk1_pS345 eIF4G eIF4G beta-Catenin 

15 beta-Catenin p70S6K p70S6K eEF2 

16 Ku80 ERK2 ERK2 E-Cadherin 

17 Akt ACC1 ACC1 Tuberin 

18 GSK3-alpha-beta Paxillin Paxillin p70S6K 

19 PDK1_pS241 MEK1 MEK1 Chk1_pS345 

20 ACC1 Bap1-c-4 Bap1-c-4 p27 



www.manaraa.com

46 

 

measures – the top-ranked protein was EGFR itself, as expected. The second-most similar 

protein was phosphorylated EGFR (Tyr1068). Overall, the selections among the different 

measures were highly congruent. However, among the three threshold-cases, there were 

several cases where relevant HNSCC-relevant proteins were selected by the multivariate 

hypergeometric similarity measure, but not by others. These included well-known cancer-

related proteins like c-Myc [148], phosphorylated c-Jun [149], HER2 [150], and NF-kB 

[1], as well as proteins which have been implicated in HNSCC in recent studies, like 

INPP4B [151, 152] and ACC1  and AMPK [153]. Others highlighted only by the 

multivariate hypergeometric similarity measure in this case study were GSK3-alpha-beta 

[154], Ku80 [155], and TSC1 [156].  

 

Table 2.6: Top 20 rankings by similarity measures on head and neck cancer RPPA data, 

using percentiles [50, 75] as thresholds 

Rank 
Multivariate hypergeometric 

similarity measure 
Pearson correlation Cosine similarity Mutual information 

1 EGFR EGFR EGFR EGFR 

2 EGFR_pY1068 EGFR_pY1068 EGFR_pY1068 EGFR_pY1068 

3 mTOR mTOR mTOR CD31 

4 p70S6K VHL VHL mTOR 

5 PDK1_pS241 PDK1_pS241 PDK1_pS241 VHL 

6 beta-Catenin HER2_pY1248 HER2_pY1248 p70S6K 

7 VHL Chk1_pS345 Chk1_pS345 PDK1_pS241 

8 E-Cadherin p70S6K p70S6K Akt 

9 AMPK_pT172 eEF2K eEF2K 14-3-3_epsilon 

10 eEF2K Tuberin Tuberin SF2 

11 Ku80 E-Cadherin E-Cadherin PDK1 

12 Tuberin INPP4B INPP4B eEF2K 

13 eIF4G eIF4G eIF4G beta-Catenin 

14 HER2 beta-Catenin beta-Catenin PRDX1 

15 Chk1_pS345 Ku80 Ku80 Bax 

16 ACC_pS79 Dvl3 Dvl3 
Caspase-

7_cleavedD198 

17 p90RSK ERK2 ERK2 HER2_pY1248 

18 NF-kB-p65_pS536 p90RSK p90RSK E-Cadherin 

19 c-Jun_pS73 ACC1 ACC1 c-Met_pY1235 

20 INPP4B MEK1 MEK1 Dvl3 
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2.5.3. Mass Spectrometry Imaging (Lipidomic) Data 

In the final set of results, the similarity measure was applied to the experimental 

MSI data. The top 12 m/z images selected by each measure are shown in Figure 2.11. All 

measures agree that the reference itself is the most similar (selection 1: m/z 889.6). 

Notably, the proposed similarity measure gives results which are qualitatively very 

similar to the reference m/z image. The Pearson correlation and mutual information 

results for three classes also closely resemble the reference m/z image, while the cosine 

similarity results for three classes include several noisy images without a clearly 

discernible pattern. Interestingly, the top 12 results selected by the proposed similarity  

 
Multivariate hypergeometric similarity 

measure (mean) 

 
Multivariate hypergeometric similarity 

measure (kurtosis) 

 
Pearson correlation 

 
Cosine similarity 

 
Mutual information 

 

Figure 2.11: The 12 most similar m/z images, as ranked by the four similarity measures. 

The multivariate hypergeometric similarity measure results are shown with the mean and 

kurtosis as combination functions. 

 

1. m/z  889.6 2. m/z  907.6 3. m/z  891.7 4. m/z  905.6 5. m/z  892.5 6. m/z  890.4

7. m/z  890.8 8. m/z  879.9 9. m/z  864.6 10. m/z  880.7 11. m/z  908.9 12. m/z  807.3

1. m/z  889.6 2. m/z  907.6 3. m/z  905.6 4. m/z  891.7 5. m/z  864.6 6. m/z  892.5

7. m/z  894.5 8. m/z  890.8 9. m/z  879.9 10. m/z  908.4 11. m/z  888.4 12. m/z  807.3

1. m/z  889.6 2. m/z  907.6 3. m/z  891.7 4. m/z  893.7 5. m/z  880.7 6. m/z  892.5

7. m/z  890.8 8. m/z  879.5 9. m/z  890.4 10. m/z  905.6 11. m/z  807.3 12. m/z  864.6

1. m/z  889.6 2. m/z  664.9 3. m/z  891.7 4. m/z  697.7 5. m/z  606.8 6. m/z  624.7

7. m/z  623.7 8. m/z  694.8 9. m/z  625.7 10. m/z  713.6 11. m/z  890.8 12. m/z  907.6

1. m/z  889.6 2. m/z  907.6 3. m/z  891.7 4. m/z  880.7 5. m/z  892.5 6. m/z  893.7

7. m/z  879.5 8. m/z  890.4 9. m/z  890.8 10. m/z  864.6 11. m/z  807.3 12. m/z  863.8
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measure using the mean and kurtosis as combination functions are not identical. 

Moreover, neither set of results overlaps completely with the results from Pearson 

correlation, mutual information, and cosine similarity. For example, the proposed 

similarity measure, using the mean as the combination function, selects m/z 908.9, which 

none of the others select. Similarly, m/z 894.5, another unique selection, is picked by the 

proposed similarity measure when using the kurtosis as the combination function. 

Examining the top n results is common when applying a similarity measure to a dataset, 

and these observations indicate that applying the proposed multivariate hypergeometric 

similarity measure can yield relevant and useful results. 

2.6. Discussion and Key Innovations 

This chapter describes the design, development, and testing of two similarity 

measures. The second, the multivariate hypergeometric similarity measure, is the main 

result. It enables the pairwise comparison of images and data vectors featuring any 

positive integer number of intensity levels. This is an extension of initial work on the 

hypergeometric similarity measure, which was restricted to binary data. Using synthetic 

datasets, the proposed multivariate measure was compared to Pearson correlation, cosine 

similarity and mutual information in terms of sample rankings, and identified several 

favorable properties of the proposed measure. Next, a method of piecewise 

approximation was developed to facilitate the application of this approach to large 

datasets. Piecewise approximation was tested at several different subsection sizes on 

synthetic data, and was observed to follow the trend of the exact score. Functions for 

combining subsection similarity scores found through piecewise approximation were 

empirically assessed using biological data. The proposed similarity measure was tested 

on two HNSCC datasets: gene expression microarray data and reverse phase protein array 
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(RPPA) data. The proposed similarity measure was also demonstrated to be effective in 

identifying qualitatively similar images in a lipidomics MSI dataset. Critically, for all 

datasets, it made relevant selections which were not identified by other similarity 

measures in their top selections. 

The results of this study highlight several avenues for further research on the 

multivariate hypergeometric similarity measure. For instance, this approach is defined for 

any positive integer number of classes, but the results in this study have considered only 

three classes. Three classes were chosen both for simplicity in examining similarity 

measure properties and to highlight the difference between the binary case and the multi-

class case. Future research can assess the effect of increasing the number of classes. 

However, as previously noted, the generation of the isomarginal family becomes 

increasingly demanding as the number of classes increases [121-124]. Additionally, 

alternative definitions of the statistic S(k) will be explored. Here, I chose S(k) as the set of 

diagonal elements of the contingency table. In the future, it may be desirable to include 

sub- and super-diagonal terms when larger numbers of classes are considered. The 

selection of the appropriate number of classes – and of appropriate thresholds for 

separating classes – is another issue of interest. In this study, several percentile-based 

thresholds between classes were compared for the gene and protein expression datasets. 

From the perspective of practical biomedical applications, choices of thresholds for a 

particular dataset may be based on examination of descriptive data statistics, or by 

applying selected tests as a preliminary step [157]. The selection of functions for 

aggregating subsection scores obtained from piecewise approximation is another area for 

further study. Six functions were tested in this study, and many additional functions could 
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be tested. Interestingly, the set of top selections using the mean and kurtosis were not 

identical, indicating that it may also be useful to consider which combination functions 

may be complimentary.  

The Key Innovations of this chapter are: 

 Development of binary hypergeometric similarity measure using Fisher’s exact 

test 

 Development of multivariate hypergeometric similarity measure using the Fisher-

Freeman-Halton test 

 Development of a piecewise approximation algorithm to facilitate application of 

the multivariate hypergeometric similarity measure to high-dimensional data 

vectors 

 Implementation on two HNSCC (transcriptomic and proteomic) and one non-

HNSCC (MSI, metabolomic / lipidomic) datasets indicates that the proposed 

multivariate hypergeometric similarity measure makes relevant selections not 

identified by other similarity measures 
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CHAPTER 3 

DETECT-TLC: EXPLORATORY DATA MINING FOR 

METABOLOMICS  

3.1. Data Acquisition for Metabolomics 

 Metabolomics offers a perspective of the small molecules, including lipids, within 

an organism or patient [158, 159]. Compared to other –omics levels, the “chemical 

fingerprint” measured through metabolomics is highly dynamic, and has been shown to 

be a promising direction for the diagnosis and monitoring of disease [160, 161]. In 

HNSCC in particular, metabolomics approaches are demonstrating promising results for 

disease detection and early diagnosis [34-36] 

The key data acquisition methodologies used in metabolomics are 
1
H NMR and 

mass spectrometry. Mass spectrometry is used both alone and coupled to liquid (LC) and 

gas (GC) chromatography (LC-MS and GS-MS, respectively) [162, 163]. The reason for 

this coupling is because the chromatography step staggers the input sample flow to the 

mass spectrometer according to size, charge, or other properties, thereby generating 

sparser and easier-to-interpret mass spectra.  

3.1.1. Coupling Thin Layer Chromatography with Mass Spectrometry Imaging 

While LC and GC both return 1D data – i.e., spectra with intensities on the 

vertical axis and retention time on the horizontal axis – thin layer chromatography (TLC) 

is a 2D chromatographic separation process. Figure 3.1 shows how separated mixture 

components appear as spots on a TLC plate. TLC is a commonly used technique in 

synthetic and organic chemistry for the separation of complex mixtures due to its 
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Figure 3.1: Optical image of a TLC plate. Image courtesy of Fernández Lab at Georgia 

Institute of Technology.  

 

simplicity and speed [164]. In metabolomics, TLC alone has been applied to study 

bacteria [165, 166], but it is frequently combined with mass spectrometry analysis.  

Due to the 2D nature of TLC, it can be coupled with mass spectrometry either by 

assessing an individual spot using conventional mass spectrometry, or by interrogating 

the entire TLC plate through MSI [167-170]. MSI analysis of TLC plates has been 

performed using different mass spectrometry ionization approaches, including including 

matrix assisted laser desorption ionization (MALDI) [171] and desorption electrospray 

ionization (DESI) [172, 173].  

The advantage of TLC-MSI coupling is the molecular-level resolution: instead of 

being restricted to spots visible on the TLC plate, the MSI datacube can describe 

thousands of measurable spots. Examining a TLC-MSI dataset is straightforward if the 

analyte of interest is known, but for exploratory data mining purposes, the volume of data 

presents a challenge. This provides an opportunity for knowledge-driven mining in terms 

of implicit similarity: the goal is to identify all m/z images containing regions similar to a 

TLC spot, regardless of its spatial location or orientation. Currently, the state-of-the-art is 
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manual inspection of the thousands of images in the MSI dataset to detect such images of 

interest, which is a substantial data processing bottleneck. This chapter presents the 

development, testing, and validation of DetectTLC, a software tool for automatically 

detecting m/z images containing regions similar to TLC spots.   

3.2. Development of Image Feature-Based Modeling Tool 

The hypothesis behind DetectTLC is that m/z images containing spot-like regions 

are distinguishable from other images on the basis of quantitative image features.  

DetectTLC utilizes a five-step image processing pipeline, culminating in the extraction of 

such features. In the first step, smoothing filters are used to remove background noise 

from the m/z images, and very sparse and noisy images are excluded based on pixel 

counts. In the second step, the continuous-intensity m/z images comprising the MSI 

dataset are converted into binary images. In the third step, morphological image 

processing operations are used to fill in small holes in the binary m/z images. In the 

fourth step, quantitative image features are extracted for each m/z image in the dataset, 

with the goal of associating more extreme feature values with m/z images which contain 

TLC spot-like regions. In the fifth and final step, the m/z images are ranked in terms of 

the quantitative image features and are visualized in the graphical user interface. 

Alternative combinations of these steps were compared in order to identify well-

performing pipelines. Each of these steps is discussed in detail in the following section.  

3.2.1. Image Processing Pipeline 

Step 1: Smoothing and Pixel-count Filters 

Median filtering was used to remove background noise. For the MSI datasets 

examined in this study, 5×5 and 7×7 median filters were compared, but the difference in 
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performance was small compared to the effects of other factors, so only results from 7×7 

filters are shown. Median filtered-results are also compared with un-filtered results. 

The pixel-count-based filter was useful for removing sparse and streak-filled 

images from consideration. It was observed that many DESI-MSI images were sparse or 

streak-filled. In different datasets, the necessity of performing this filtering step may 

vary, as few such images may exist. Typically, binary m/z images with fewer than 5 and 

more than 1500 non-zero pixels were removed from consideration. Results with and 

without this filtering step were compared. 

 

Step 2: Generating Binary Images 

Two different methods for generating binary images were compared in this study. 

The first is a manually-selected threshold: if any signal S was present at a pixel (x, y) in 

the original m/z image above the threshold value T (i.e., S(x, y) > T), the value of the pixel 

in the binary image B(x, y) = 1. Otherwise, B(x, y) = 0. Users may select the desired 

threshold through the Advanced Options menu of the DetectTLC interface, which also 

provides a visualization of the selected threshold with respect to the average spectrum of 

the dataset. The second technique is Otsu’s method, which selects the threshold at which 

the within-class variance of the pixels assigned to each label is minimized [174]. 

 

Step 3: Morphological Operations 

As shown in Figure 3.2, an m/z image may feature a spot-like region that is not 

solid, i.e., single pixels or clusters of a few pixels where no or low signal was detected 

may occur between pixels where signal was detected. To the user, this area is interpreted 
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Figure 3.2: Example of a TLC spot-like region in an m/z image. Note that the spot 

consists of both high- and low-intensity pixels.  

 

as a single spot-like region regardless. However, these discontinuities can influence the 

automated, image-feature based detection of spot-like regions. To address this issue, 

DetectTLC applies morphological image processing operations to the MSI dataset. 

Erosion and dilation are two basic morphological operators used in image processing. A 

structuring element of a particular shape – common shapes include disks, squares, and 

diamonds – is used to remove (in erosion) or add (in dilation) a layer of pixels from the 

image. The compound morphological operators of opening and closing are defined in 

terms of erosion and dilation: in opening, erosion is followed by dilation, and in closing, 

dilation is followed by erosion. In this study, we compared the performance of dilation 

and opening in generating homogenous spot-like regions: dilation fills in small holes in a 

single region and gaps between regions, while opening removes connections between 

separate regions.  

 

Step 4: Scoring Based on Quantitative Image Feature Values 

The performances of eight quantitative image features were investigated and 

compared in the development of DetectTLC. These included seven shape-based features: 
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area, compactness, convex area, eccentricity, extent, number of connected regions, and 

solidity; and one texture-based feature: entropy. Each of these features is described 

further in Table 3.1.   

Table 3.1. Definition and description of image features investigated in the development 

of DetectTLC. 

Image 

feature 
Definition Description 

Area (A) 

A =  ∑     , where x 

represents pixels with a 

value of one in the binary 

image, and f is a 

neighborhood operation 

function. 

This feature is the weighted sum of pixels 

with a value of one in the binary image. 

Different spatial distributions of pixels are 

weighted. Images containing a spot-like 

region may have lower area values than 

images with other structures. 

Compactness 

(Co) 

Co = P
2
 / A, where P is 

the perimeter of the non-

zero region and A is its 

area. 

 

Compactness is a regional descriptor 

defined as the ratio of an object’s squared 

perimeter to its area. Compactness is 

minimal for disk-shaped regions [115], so 

images with a spot-like region may be 

characterized by lower compactness values. 

Convex area 

(Ca) 

Ca = ∑  where x 

represents pixels which 

are in the convex hull of 

the image. 

 

 

The convex area is the number of pixels 

inside the convex hull, which is the 

smallest convex polygon that contains the 

entire region of non-zero pixels. A smaller 

convex area implies a small, cohesive 

region of interest, so images containing a 

spot-like region may be characterized by 

lower convex area values. 

 

Eccentricity 

(Ec) 

Ec = Dc / Dv, where Dc is 

the distance from the 

center to the focus of the 

ellipse, and Dv is the 

distance from the center to 

a vertex. 

 

Eccentricity is calculated by fitting an 

ellipse to the region of interest, such that 

the ellipse and the region share the same 

second moments. The image feature is then 

the eccentricity of the fitted ellipse. For a 

circular region, eccentricity would be 0; for 

a line it would be 1. Images containing a 

spot-like region may be characterized by 

lower eccentricity values. 

 

Table 3.1 continued overleaf. 
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Table 3.1, continued 

Entropy (En) 

En = -∑          , i = 

0...1, where    represents 

the fraction of zero (i = 0) 

and non-zero (i = 1) pixels 

in the image. 

 

Entropy is a measure of randomness used 

to describe image texture. For binary 

images, entropy is defined in terms of the 

fractions of zero and non-zero pixels. The 

quantity is maximized when the fraction of 

each pixel type is equal, so images with 

larger spot-like regions may be 

characterized by higher entropy values. 

 

Extent (Ex) 

Ex = ∑  /  ∑ , where x 

represents pixels which 

are within the region, and 

B represents all pixels 

which are within the 

bounding box. 

Extent is defined in terms of the bounding 

box, which is the smallest rectangular 

region that completely encloses the region. 

Extent measures the proportion to which 

the region of interest fills the bounding 

box. Images with a spot-like region may be 

characterized by higher values of Ex. 

 

Number of 

connected 

regions (Re) 

 

Re = E + H, where E is 

the Euler number and H is 

the number of holes. 

The number of connected components is 

related to the Euler number (E), a 

commonly used shape-based image feature. 

The Euler number is defined as the 

difference between the number of 

connected components and the number of 

holes (H). In an image with solid spot-like 

feature, ideally there would be no holes (Re 

= E), so the number of connected 

components was considered as a feature 

instead of Euler’s number. Images with 

several distinct spot-like regions may be 

characterized by higher values of Re. 

 

Solidity (S) 

S = A / Ca, where A is the 

image feature Area and 

Ca is the image feature 

Convex area. 

Solidity is a composite feature, defined in 

terms of Area and Convex Area. This 

image feature measures the fraction of 

pixels which are in both the convex hull 

and the region of interest. Images with a 

spot-like region may be characterized by 

higher values of S. 

 

3.2.2. Features of Graphical User Interface 

The user interface comprises four windows, with the main window shown in 

Figure 3.3. This window displays the spot-containing images identified through different  
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Figure 3.3: The main graphical user interface with the top 24 images containing spot-like 

regions are displayed. Data is first uploaded and (optionally) de-isotoped, following 

which the user may select from “Protocol 1” or “Protocol 2” for feature selection, or 

design their own processing pipeline through the “Advanced Options” tab. Spots with 

similar spatial distributions may be identified using the “Similarity Options”. Selected 

images and/or spectra may be exported using the “Export Options”. 

 

algorithms, and contains a control panel for accessing the “Load New Dataset“, 

“Advanced Options”, and “Similarity Options” menus. Algorithm results are displayed 

on the main graphical user interface (GUI), 24 m/z images at a time. After running a 

processing protocol, images are initially sorted based on a quantitative image feature-

based score. Within each window, they may be re-sorted by ascending m/z value for 

convenience. A scroll bar is used to scan though all images, which may also be visualized 

with alternate color schemes if desired. Additionally, the user can narrow the examined 

mass range for more targeted examination of images containing spot-like regions. The 

main user options in the DetectTLC GUI are described below.  
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Load New Dataset 

DetectTLC accommodates MSI data in Analyze 7.5 and mzXML format (with 

time and position information). It also accepts MSI data which have been imported into 

MATLAB and saved as matrices in ‘.mat’ files. Thus, other MSI data formats can also be 

used with DetectTLC if they are first imported into MATLAB. 

 

De-isotope data 

DetectTLC currently uses a basic de-isotoping algorithm in which the highest-

intensity m/z value in each 3 Da-window is retained. Each spectrum is de-isotoped 

individually, and the spectra are then re-assembled into a de-isotoped datacube. After de-

isotoping is performed, all further processing protocols will automatically be performed 

on the de-isotoped data. In order to return to the raw data (with no de-isotoping), it is 

necessary to re-load the data files. 

 

Visualization 

The main graphical user interface displays 24 m/z images at a time. The scroll bar 

at the bottom of the tool screen allows users to scroll through the dataset, showing m/z 

images 25-48, 49-72, etc. Whenever a processing protocol is implemented, the interface 

will show the top 24 m/z images according to that protocol, and the user can scroll 

through the rest of the ordered selections. Additionally, the user can select among three 

color schemes to customize the visualization in order to enhance detection of relevant m/z 

images. 
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Pre-set automatic protocols 

Two automatic protocols are offered. The first, “Protocol 1: Larger spots”, uses 

entropy as the quantitative image feature for scoring. The second, “Protocol 2: Smaller 

spots”, uses compactness as the image feature. The default settings for filtering by 

intensity, filtering by non-zero pixels and median filtering are implemented in both of 

these protocols. 

 

Refresh current dataset 

By pressing the “Refresh dataset” button, the user can return the display to the 

original MSI data before any processing protocols (pre-set or via the advanced options) 

were applied. If the dataset had been de-isotoped, the de-isotoped data will be shown. 

 

Find m/z values 

This option displays all images corresponding to the user-input m/z range. Any 

processing steps that are called after the “Find m/z values” command will operate only on 

the images within that m/z range. To process the entire dataset, it is necessary to press the 

‘Refresh dataset’ button first. 

 

Ignore m/z values 

This feature can be used to select m/z images which are not of interest to the user 

(e.g., noisy images, or images with homogeneous signal intensity) and remove them from 

the current dataset view. The original MSI data can be retrieved by using the “Refresh 

dataset” option.  
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Sort by image feature value or m/z value 

As a default, the m/z images returned by any processing protocol are sorted by the 

quantitative image feature value. To facilitate review, the 24 images within an individual 

screen may also be sorted in order of ascending m/z value.  

 

Export (with or without average spectrum) 

Two different export utilities are available in DetectTLC: (1) Export Selected 

Images and (2) Export With Spectrum. In (1) Export Selected Images, the user can use 

the checkboxes below each m/z image to make selections, and then click the button 

labeled “Export Selected Images”. All selected images will be saved in ‘.fig’ format to 

the user-specified directory, and an ASCII file listing the selected m/z values will be 

created in the same directory. Multiple m/z images within one screen (24 images) can be 

exported simultaneously. In (2) Export With Spectrum, the user will instead click the 

button labeled “With Spectrum”. A new figure will appear, showing the selected m/z 

image. The user can use the drawing cursor to select a region of interest by drawing a line 

through the spot-like region or around it. After the region of interest is selected, a 

composite figure containing both the m/z image and the average spectrum in the region of 

interest (Figure 3.4) will be saved as a MATLAB ‘.fig’ file in the user-specified 

directory. Again, multiple m/z images (24 per screen) can be selected simultaneously. If 

multiple m/z images are selected, the process of manual region of interest selection will 

be repeated for each image, and an ASCII file listing the selected m/z values will be 

created in the same directory. 
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 Figure 3.4: Example of selected m/z image (m/z 140.1043) to draw a region of interest 

(ROI, outlined in white) and resulting average spectrum for selected pixels. 

 

Advanced Options GUI 

The Advanced Options GUI (Figure 3.5) provides users with more control over 

how the MSI data is processed and analyzed. Four different pre-processing control panels 

are available: (1) Generation of binary images; (2) Pixel-count filtering; (3) Median 

filtering; and (4) Image feature selection. 

 

Figure 3.5: Advanced Options GUI in DetectTLC. 
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In DetectTLC, morphological operations and image feature scores are computed 

on binary m/z images.  In the “Generation of binary images” control panel, the user has 

the option of using Otsu’s method (default) or manually selecting a threshold for 

generating binary m/z images. The success of the thresholding process is highly 

dependent on spectral signal-to-noise; it is valuable to identify genuine spots that may 

have low abundance, but that are still sufficiently above baseline noise. Manual threshold 

selection allows for the user’s knowledge of the spectral quality to be factored into the 

processing, but Otsu’s method for threshold selection provides a satisfactory approach 

without the need for user input. In the case studies presented here, manual threshold 

selection and Otsu’s method yielded comparable results across all other processing 

variables. The average spectrum across the MSI dataset is displayed below the 

thresholding panel in the GUI, and when the “Apply” button is clicked, the manually-

selected threshold is overlaid on the spectrum as a red line. 

The “Pixel-count filtering” control panel can be used to eliminate sparse images 

(i.e., m/z images with non-zero signal in very few pixels) and so-called streaky images 

(i.e., m/z images with high intensity signal in many pixels, but in a noisy, non-informative 

spatial pattern). In the MSI dataset analyzed in this paper, sparse images were generated 

as a result of the centroiding process. These images were eliminated by establishing a 

minimum of 5 pixels for a spot to be detected. Conversely, no more than 1500 pixels for 

a particular m/z could be present for a true spot, as the presence of that many pixels 

indicated streaks or widespread presence of a species across the entire TLC plate (e.g., an 

impurity in the DESI solvent). For general use, a histogram showing the distribution of 

m/z images with different numbers of non-zero pixels is displayed. The user can refer to 
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this histogram to select the upper and lower thresholds for pixel-count filtering. When the 

“Apply” button is clicked, all m/z images containing a number of non-zero pixels above 

the upper threshold or below the lower threshold are discarded from the dataset. The 

default setting is to discard images with fewer than 5 non-zero pixels and with more than 

1500 non-zero pixels. 

In the “Median filtering of m/z images” panel, the user can select the size of the 

two-dimensional median filter applied to remove “salt-and-pepper” background noise 

from the m/z images. The default setting is a 5×5 median filter. If no median filtering is 

desired, the filter size should be set to 0×0. 

The fourth and final panel allows the user to select from among the eight image 

features investigated in this paper: area, compactness, convex area, eccentricity, entropy, 

extent, number of connected regions, and solidity. The m/z images remaining after the 

filtering steps, sorted according to the selected image feature, will be displayed in the 

main GUI. Selection of the image feature of interest is independent of the three pre-

processing options. It is not necessary to perform any pre-processing before applying the 

image feature-based sorting – the default settings of Otsu’s method, < 5, > 1500 pixel-

count filtering, and 5×5 median filtering will be applied. The three pre-processing steps 

can also be applied individually or in any combination prior to selecting an image feature. 

 

Similarity Assessment 

Multiple protocols for performing similarity analysis are available in DetectTLC. 

The most basic method, which is implemented by selecting any m/z image via its  
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Figure 3.6: Advanced Similarity Options GUI in DetectTLC. The binary template 

corresponding to the selected m/z image for m/z 140 is shown as an example. 

 

checkbox and clicking the “Find Similar” button, will return the most similar m/z images 

within the same dataset, as ranked by the binary hypergeometric similarity measure 

(described in Chapter 2). Alternatively, by clicking the “Advanced Similarity” button, the 

Advanced Similarity Options window will open, as shown in Figure 3.6.   

The Advanced Similarity Options window provides three methods for managing 

the region of interest (ROI) for similarity assessment. These are: (1) Create and save a 

new ROI template (may then be used with the same or another dataset, i.e., “inter-

dataset”); (2) Import an existing ROI template (may be from the same or another dataset, 

i.e., “inter-dataset”); (3) Create and implement an ROI template on the current dataset 

(i.e., “intra-dataset”). These options are described further as follows. 

The first option, “Save ROI (inter-dataset)” enables the user to draw a binary ROI 

template and save it for later use, with the same or another MSI dataset having the same 

spatial dimensions. If the checkbox of any m/z image was selected in the main GUI, that 

m/z image will be provided as the guide for drawing the binary template. If not, the 
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average image across the loaded dataset will be provided. Once the template is drawn, the 

user may save it to a selected filename and directory. If a particular m/z image is used as 

the template basis, three variables are saved: the binary ROI, the m/z vector from current 

dataset, and the peak height of selected m/z in the current average spectrum. When the 

template is imported later, this data will be used to draw a spectrum of similar peaks. If 

the average m/z image is used as the template basis, only the binary ROI is saved. 

In the second option, “Import ROI (inter-dataset)”, a previously drawn ROI can 

be loaded. In order to use this ROI for similarity assessment, it must have the same 

spatial dimensions as the currently loaded dataset. Some variations in spatial dimensions 

can be handled by DetectTLC. These are: 

1. Template image is rotated 90 degrees with respect to current dataset. DetectTLC 

will rotate the template so that the dimensions match. 

2. Template image has one extra row and/or column. DetectTLC will delete the first 

row and/or column from the dataset. 

3. Template image is rotated 90 degrees and has an extra row and/or column.  

Before any of these actions are taken, DetectTLC will notify the user that the 

spatial dimensions of the current dataset and selected template do not match. If the 

mismatch falls into any of these three categories, DetectTLC will prompt as to whether 

the template should be automatically adjusted. If the mismatch does not fall into these 

three categories, DetectTLC will prompt the user to load a different template for use with 

the current dataset. 

In the third option, “Draw template (intra-dataset)”, the user can draw a template 

which will immediately be used for similarity assessment on the currently loaded dataset, 
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and which will not be saved. This differs from basic “Find Similar” option in that the user 

may select which similarity metric to use, and the spectrum of most similar peaks may be 

plotted. 

After a template is available (either through the Import or Draw options), the 

median filter, pixel-count filter, “Choose similarity measure,” and “Plot spectrum of most 

similar” panels become visible. The median filter and pixel-count filter options are as 

described previously. The user may select between two similarity measures: Pearson 

correlation or the hypergeometric similarity measure. As discussed in Chapter 2, analyses 

on MSI and other types of high-dimensional data have indicated that these two similarity 

measures tend to yield relevant but complementary (i.e., including non-overlapping, 

unique selections) top ranked results [175, 176]. Once the “Select” button is pressed, 

similarity assessment will proceed using the selected measure, and the m/z values in the 

current dataset will be sorted in the main GUI according to their similarity to the 

template. After similarity assessment has completed, the user may plot a spectrum of 

most similar m/z values by choosing the number to plot in the “Plot spectrum of most 

similar” panel. If the imported template was based on a particular m/z value, that m/z 

value (the precursor peak, in precursor-product analysis) will be indicated in red on the 

spectrum, and the similar peaks from the current dataset will be plotted in black. 

Otherwise, all peaks will be plotted in black. 

3.3. Case Studies 

The datasets used for the case studies are related to prebiotically-relevant abiotic 

synthesis of nucleic acids such as DNA and RNA. While these datasets are not linked to 

HNSCC, the advantage is that they are less complex mixtures than eukaryotic cell 
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lysates. Thus, they provide test cases for DetectTLC that have comparatively less 

chemical noise and are easier to interpret, thereby facilitating the testing and validation of 

the tool.  

Three datasets were investigated. The first and second both involved reaction 

products that are part of the synthesis of pyrazin-2-one (PZO). The two datasets were 

generated by using two different solvent systems (A and B). PZO-A was used in the first 

case study, Pipeline Comparison, and PZO-A and PZO-B were investigated in the second 

case study, TLC Spot Detection. The third dataset, which was utilized in the Parent-

Fragment Ion Detection case study, used the reaction synthesis mixture for 2-

aminopyrazine (APZ). All datasets were DESI-MSI. The full details of the experimental 

data acquisition process are described in [177].  

3.3.1. Pipeline Comparison 

Considering the two thresholding methods, two morphological operators, two 

median filter options (none and 7×7), two pixel-count filter options (none and excluding 

< 5, > 1500), and eight image features, a total of 128 alternative processing pipelines are 

possible. These were compared for the PZO MSI dataset. Each pipeline was assessed by 

the number of images in the top 40 rankings which contained true spot-like regions, as 

determined by manual inspection and verification of selected spots by collaborators in the 

Fernández lab. The full results of this comparison are shown in Table 3.2.  

For this MSI dataset, the best results were returned by the analysis pipeline 

consisting of (1) Otsu’s threshold, (2) morphological opening, (3) application of a 7×7 

median filter, and (4) removal of images with < 5 and > 1500 non-zero pixels. For all of 

the image features except area, all 40 of the top 40 ranked images contained TLC spot- 
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Table 3.2: Performance comparison of all 128 alternative processing pipelines in 

identifying m/z images containing TLC spot-like regions among the top 40 rankings. 
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Figure 3.7: Example of m/z images featuring larger TLC spot-like regions. The top 40 

selections are shown for the analysis pipeline consisting of (1) Otsu’s method for 

generating binary images, (2) morphological opening, (3) 7×7 median filtering, (4) 

removal of images with < 5 and > 1500 non-zero pixels, and (5) entropy image feature. 

 

 
Figure 3.8: Example of m/z images featuring smaller TLC spot-like regions. The top 40 

selections are shown for the analysis pipeline consisting of (1) Otsu’s method for 

generating binary images, (2) morphological opening, (3) 7×7 median filtering, (4) 

removal of images with < 5 and > 1500 non-zero pixels, and (5) the compactness image 

feature. 
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like regions. The difference among the feature measures is most clearly demonstrated by 

the variety and size of the spots identified, as illustrated to an extent in Figures 3.7-3.8.  

To further investigate these differences, the overlap among the top 40 rankings 

between each feature pair is shown in Table 3.3. This comparison confirms qualitative 

observations: image features which returned m/z images with smaller spot-like regions, 

such as compactness and convex area, had similar top 40 lists (e.g., 34/40 in common). 

Meanwhile, entropy, which returned m/z images with larger spot-like regions, and 

compactness had very different lists (e.g., 11/40 in common). Importantly, none of the 

image features were completely redundant in terms of their top 40 rankings. Image 

feature pairs which highlighted similar types (e.g. smaller or larger) of spot-like regions 

still returned unique m/z images. For example, entropy and extent both tended to  

 

Table 3.3: Pairwise comparison of m/z images selected as the top 40 selections by 

different image features. 
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highlight larger spot-like regions, but only 20/40 of their top-ranked images were in 

common. Thus, examining both of their top-ranked lists would be helpful during analysis, 

compared to considering only one image feature.  

 

3.3.2. TLC Spot Detection 

This case study demonstrates the application of DetectTLC in exploratory data 

mining through the PZO-A and PZO-B datasets. 

 

DetectTLC Identifies Known Reaction Mixture Components 

Three major products of the PZO synthesis process have previously been 

identified, and their chemical structures are known. These molecules are indicated in 

Figure 3.9(b). The TLC-MSI dataset was analyzed using DetectTLC. The top 20 results 

included images corresponding to the known products in terms of m/z and spatial 

location, as shown in Figure 3.9(c-d).  

 

 
Figure 3.9: (a) Fluorescence image of a developed high-performance TLC (HPTLC) plate 

with the area imaged through DESI-MSI outlined in green (b) Known products of the 

PZO reaction, with numbers indicating the spatial location of each product in the 

fluorescence and MS images (c) Selected ion images acquired by DESI-MSI of reaction 

products previously identified, and (d) the corresponding images found by DetectTLC.  
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DetectTLC Can Help to Identify Relevant Components through Untargeted Analysis 

When the PZO reaction mixture was analyzed using solvent system B, an intense 

fluorescent spot was observed that had not been seen using solvent system A, as shown in 

Figure 3.10(a). Processing the PZO-B dataset with DetectTLC yielded an ion image (m/z 

167.0353) in which the spot was co-localized with that of the fluorescent image, as 

shown in Figure 3.10(c). This image was the 13
th

 generated by DetectTLC, and appeared 

on the first page of results in the main GUI. Combining the DetectTLC-supplied m/z 

value with knowledge of reaction chemistry, my collaborators in the Fernández lab were 

able to tentatively identify this spot as 3,5(6)-dimethyl-4-oxoethyl-2-oxo-pyrazin-4-ium, 

a plausible reaction side-product of PZO synthesis.  

 

Figure 3.10: (a) Fluorescence image of a developed high-performance TLC (HPTLC) 

plate of the PZO reaction mixture, as separated by solvent system B. The green box 

indicates the area imaged using DESI-MSI, and Spot 4 indicates the unknown signal. (b) 

The manually plotted image of m/z 167.0353 and (c) the DetectTLC image identifying 

compound with m/z 167.0815 to be co-localized with Spot 4.  
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3.3.3. Parent-Fragment Ion Detection 

The third and final case study applies the similarity assessment capabilities of 

DetectTLC to assist in structural identification of detected ions. In order to identify ions 

detected through mass spectrometry, it is necessary to obtain fragmentation data from 

high-energy ionization. In a typical tandem mass spectrometry (MS/MS) analysis, a 

precursor (parent) ion is selected for fragmentation. In MSI, selecting and fragmenting 

individual parent ions while maintaining high imaging throughput is challenging. A 

solution is to instead alternate between high- and low-energy scans while imaging, 

enabling both parent and fragment ions to be detected during a single experiment. This 

results in two datasets of equal or almost equal spatial dimensions, one consisting of 

parent ions, and another of fragment ions. DetectTLC utilizes spatial similarity measures 

to match potential fragments with parents. 

This process is performed by allowing the user to select a parent ion of interest 

using the ‘Advanced Similarity’ GUI, and then identifying the most similar images in the 

fragment ion dataset. The intact parent ion of interest was 5(2-hydroxyethyl)-2-

aminopyrazine (m/z 140.0817), a predicted side-product of the APZ reaction. The image 

corresponding to m/z 140.1 was first identified by DetectTLC from the low collision-

energy dataset, as previously shown in Figure 3.6, and was used to create a template of 

the spot’s location. Figures 3.11 and 3.12 show the results of the similarity assessment 

process, using Pearson correlation and the hypergeometric similarity measure, 

respectively. Both measures returned the same top 9 ranked ions, but sorted in different 

orders. Two of the top-ranked ions (m/z 122.0714 and 78.0345) were assigned to H2O 

and CH6N2O losses from the parent ion, respectively. This observed fragmentation 
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pattern supports the structural assignment of 5(2-hydroxyethyl)-2-aminopyrazine to ions 

at m/z 140.0817. 

In order to validate the fragment ions selected by DetectTLC, they were compared 

to liquid chromatography-tandem MS (LC-MS/MS) analysis performed on the parent ion.  

 

 

Figure 3.11: (top) The most similar fragment ion images observed when Pearson 

correlation was applied using the image of the precursor ion (m/z 140.1) as a reference. 

(bottom)  The fragmentation mass spectrum showing the top 10 most similar m/z values 

(reference m/z indicated by dashed red line). DetectTLC automatically generates both of 

these figures during similarity analysis. 
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Figure 3.12: (top) The most similar fragment ion images observed when the 

hypergeometric similarity was applied using the image of the precursor ion (m/z 140.1) as 

a reference. (bottom)  The fragmentation mass spectrum showing the top 10 most similar 

m/z values (reference m/z indicated by dashed red line). DetectTLC automatically 

generates both of these figures during similarity analysis. 

 

These results are shown in Figure 3.13. Three of the ions, at m/z 78.0, 122.1, and 140.1, 

were identified in both datasets. The LC-MS/MS experiment also identified four other 

fragment ions which were not selected by DetectTLC: m/z 95.1, 105.0, 109.1, and 110.1. 

Investigation as to why these ions were missed by DetectTLC showed that three of  
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Figure 3.13: Comparison of LC-MS/MS analysis of selected APZ reaction products and 

the manually-selected ion images from low- and high-energy scans DESI-MSI. 

DetectTLC similarity matching was performed using m/z 140.1 as a template, and the 

high-energy ion images with red borders were in the top 8 outputs of DetectTLC. Figure 

courtesy of Fernández lab.  

 

them (m/z 95.1, 105.0, and 109.1) had very low contrast between the TLC spot and the 

background. The deisotoping protocol was also found to be a factor in filtering out these 

relevant images; follow-up experiments (not shown) with smaller windows for 

deisotoping led to the selection of m/z 109.1 and 110.1 among the top 16 results.  

3.4. Applications to HNSCC Research 

DetectTLC is a general tool capable of processing TLC-MSI data from different 

biological contexts, including HNSCC. As previously noted, metabolomic research 
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through mass spectrometry in HNSCC is gaining momentum [35, 36]. In addition, TLC 

has been applied in HNSCC lipidomics research in several recent publications. For 

example, Gu and colleagues used TLC to separate and visualize lipids from five HNSCC 

cell lines in order to determine the mechanism by which RRR-α-tocopheryl succinate, a 

vitamin E analogue, induces apoptosis [178]. Yang and colleagues used TLC to track the 

effects of deguelin, which has been shown to have chemopreventive effects against other 

cancers, on HNSCC via the pro-apoptotic sphingolipid ceramide [179]. Thus, as research 

into metabolomics continues to grow, TLC-MSI analysis can help to uncover relevant 

metabolite- and lipid-centric patterns in HNSCC. DetectTLC can accelerate these 

experiments by removing the bottleneck of manual data processing.  

3.5. Discussion and Key Innovations 

In this chapter, I have described the design, development, and validation of 

DetectTLC, a software tool for accelerating metabolomics research through coupled 

TLC-MSI analysis. The previous state-of-the-art in assessing TLC-MSI datasets was 

manual inspection of the data to search for m/z images with TLC spot-like regions. 

DetectTLC automates this process, thereby removing a significant bottleneck to TLC-

MSI experiments. While the TLC-MSI datasets tested during its development are related 

to prebiotic chemistry, DetectTLC is a general system that can be applied to 

metabolomics research in many different contexts, including HNSCC.  

The utility of DetectTLC has been validated in the second and third case studies. 

First, it was demonstrated that DetectTLC is capable of automatically detecting spots 

corresponding to both expected and unexpected reaction mixture components. Second, it 

was demonstrated that DetectTLC can assist in structural identification of ions of interest 
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when multi-modal MSI is performed. During these validation experiments, some 

limitations of the current algorithms were also identified. Future versions of DetectTLC 

can incorporate image processing algorithms for the elimination of noisy background 

signals. They can also incorporate more sophisticated methods for deisotoping MSI data, 

in order to avoid inadvertent filtering of relevant m/z images in favor of neighboring 

high-intensity noisy images.  

DetectTLC was developed and implemented in MATLAB. To enable widespread 

use of the tool, an executable (.exe) version of the tool has been generated. The tool will 

soon be freely deployed to the community via the website of Bio-MIBLAB at Georgia 

Institute of Technology.  

The work described in this chapter was performed in collaboration with Dr. May 

D. Wang, Dr. Facundo M. Fernández and Dr. Rachel (Bennett) Stryffeler. Dr. Stryffeler 

performed MSI data acquisition and LC-MS/MS validation, while I implemented the 

DetectTLC tool and performed software-side experiments. The project idea and the 

design of DetectTLC tool capabilities and features were jointly developed.  

The Key Innovations of this chapter are: 

 Development of the first analytical pipelines using quantitative image features for 

identifying m/z images containing spot-like regions in MSI data 

 Design, implementation, and validation of the first software tool, DetectTLC, for 

enabling and accelerating TLC-MSI studies in metabolomics by automatically 

finding mixture components of potential interest in TLC-MSI datasets 
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CHAPTER 4 

SUPERVISED LEARNING MODELS FOR PATHOLOGICAL 

STAGE USING PROTEOMIC AND TRANSCRIPTOMIC DATA 

4.1 HNSCC Disease Stage and Outcomes 

The stage at which HNSCC is detected is important to therapeutic outcomes; 

patients with early stage (I and II) cancer have between 60-95% chance of successful 

local treatment, while those with advanced stage cancer are at high risk for recurrence or 

metastatic disease [37]. Greater knowledge of the molecular characteristics of different 

stages can provide insight into the mechanisms of HNSCC progression, and may help in 

identifying more effective therapeutic targets and strategies for treatment.  

Previous research studies have analyzed gene expression, proteomic, and 

metabolomic data individually for studying differences between HNSCC stages, with 

mixed results. For example, three transcriptomic studies have related selected genes and 

gene signatures to different HNSCC stages [40, 45, 46], while two other transcriptomic 

studies did not find any discriminatory genes [41, 43]. A recent proteomic study using 

SELDI-TOF mass spectrometry data identified 11 m/z values differentially expressed 

between early- and late-stage oral SCC, but a satisfactory predictive model could not be 

developed [42]. Another recent study, using MALDI-TOF mass spectrometry data, 

identified several peaks that tended to correlate with clinical disease progression; 

however, no predictive model was developed [44]. A metabolomic study using 
1
H NMR 

data identified several metabolite markers that discriminated between early and advanced 

stage HNSCC samples [34]. Additional bioinformatics studies – and in particular, the 
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development of predictive models that harness multiple data types – may help to gain 

additional insight into the differences between early and advanced HNSCC.  

In this chapter, I investigated how quantitative functional proteomics, via reverse 

phase protein array (RPPA) data, can be used to develop predictive models for HNSCC 

stage. RPPA data is acquired by probing a sample with antibodies against specific 

proteins with regard to their activation states. With respect to HNSCC, RPPA data has 

been used to identify differentially expressed proteins between cancer and normal 

samples [180] and to identify proteins affected by the presence of an anti-invasion 

compound in nasopharyngeal carcinoma [181]. RPPA data has been applied to build 

predictive models for several other cancer types. Recent examples include for prognosis 

[182], drug response [183], and risk of recurrence [184] in breast cancer; for treatment 

response in ovarian cancer [185]; and for drug sensitivity in non-small-cell lung cancer 

[186].  

In addition, I expanded upon previous efforts by developing predictive models for 

the same patient set using RNAseq data, and performing integrated analysis of RPPA and 

RNAseq data through functional assessment and ensemble model development. The goal 

of this investigation is to develop a set of improved predictive models, and thereby gather 

additional insight into HNSCC progression across multiple biological scales.  

4.2 Protein and Gene Expression Datasets 

RPPA data for HNSCC was downloaded from The Cancer Proteome Atlas 

(TCPA)  [126] at http://bioinformatics.mdanderson.org/main/TCPA:Overview. This 

dataset consists of 212 patient samples and measures the response to 187 antibodies. 

TCPA provides a proteomic complement to The Cancer Genome Atlas (TCGA) [187] at 

http://bioinformatics.mdanderson.org/main/TCPA:Overview
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http://cancergenome.nih.gov/, where clinical, transcriptomic, and genomic data for the 

same patients are available. RNAseq data (Version 2) for HNSCC was downloaded from 

TCGA. Data was available for 210 of the same patients.  

The downloaded RPPA data had been normalized and protein expression had 

been quantified using the “Supercurve Fitting” method. The details of these pre-

processing steps are described in [126, 188]. In TCPA, antibodies are grouped into three 

classes: “validated”, “under evaluation”, and “use with caution.” To perform a more 

conservative analysis, only those proteins with antibodies described as “validated” in 

both [126, 188] were utilized in this study. 113 proteins were considered for further 

analysis. In TCGA, RNAseq (Version 2) data has been aligned using MapSplice and 

quantified using RSEM [189, 190]. This dataset describes 20,531 genes. The un-

normalized data was used for differential expression analysis and the normalized data 

was used for classification. 

The clinical data for the 212 patients was downloaded from TCGA. Pathological 

stage information was used to divide the RPPA and RNAseq datasets into two groups: 

patients with early stage (stage I and II) cancer, and patients with advanced stage (stage 

III, IVA, IVB) cancer. Pathological state was unavailable for 12 patients, so clinical stage 

was substituted. One patient for whom the pathological stage was unavailable and the 

clinical stage was IVC was not considered, because unlike the other advanced cases, 

stage IVC involves metastatic disease. For RPPA, the early stage group contained 50 

patients, and the advanced stage group contained 161 patients. The two patients for 

whom RNAseq data was unavailable were both of advanced pathological stage.  

 

http://cancergenome.nih.gov/
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4.3. Model Development 

 

 
Figure 4.1:  The nested cross-validation framework used in this study. The outer split was 

repeated n = 3 times, and the inner 10-fold cross-validation was repeated m = 5 times. 

 

Classification Methods 

Four individual binary classification methods and two ensemble classification 

methods were tested: k-nearest neighbors (KNN), support vector machine (SVM), naïve 

Bayes, decision tree, Adaboost, and bagging / Random Forests. Optimal parameters for 

each model were selected via nested cross-validation and grid search. Table I lists the 

range of parameters tested for each model, and Figure 4.1 describes the 3×5×10 nested 

cross-validation scheme. Optimization was performed with respect to the Matthews 

correlation coefficient (MCC). The area under the ROC curve (AUC) is also reported for 

the model having the maximum mean MCC. Analyses were performed using MATLAB 

(Mathworks, Natick MA).  
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Table 4.1: Classification model parameters examined via nested cross-validation 

Classification Method Parameters Set of values 

KNN Number of neighbors (K)   [                    ] 
SVM Kernel 

Soft margin cost (C) 

  for GBRF 

Kernels: linear, Gaussian radial 

basis function (GRBF) 

C   2
m

, m   [-1,0,1] 

  2
m

, m   [-1,0,1] 

Naïve Bayes Prior distribution Distributions: normal, kernel 

Decision Tree Splitting criterion Criteria: Gini diversity index (GDI), 

Twoing rule, Maximum deviance 

reduction (MDR) 

Adaboost Number of trees (N)    [25,50,100] 

Bagging / Random 

Forests 

Proportion (m) of all 

variables (p) to retain 
  [√  

 

 
 
 

 
  ] 

 

Feature Selection 

Three alternative feature selection methods were tested: two filter approaches and 

one wrapper approach.  

The first filter method was based on differential expression. For RPPA data, the 

Wilcoxon rank-sum test was applied to identify proteins with significantly different 

expression between the early and advanced stage groups. Multiple testing corrections 

were applied by calculating the FDR for each protein, using the method of Benjamini and 

Hochberg through the R package p.adjust. To obtain a less conservative initial feature set, 

clinical stage was used to obtain a differentially expressed protein list. This yielded 11 

proteins with FDR values ≤ 0.05, including the five proteins found when only 

pathological stage was used. A comprehensive examination of this feature space was 

performed by considering alternative classification models for every combination of the 

11 features, i.e., ∑ (  
 
)        

    feature sets were considered. For RNAseq data, 

differential expression analysis was performed using two alternative tools, edgeR and 

EBSeq, of which the latter uses Bayesian methods [191, 192]. For a threshold of  
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FDR ≤ 0.05, edgeR identified 495 genes and EBSeq found 267 genes. These two lists had 

108 genes in common. Due to the large number of differentially expressed genes 

identified by each method, comprehensive investigation of the feature space was not 

possible. Instead, model performances were compared across four feature sets: each 

differential expression result individually, the 108 common genes, and the 654 genes in 

the union of the selections of both methods.  

The second filter method was mRMR (minimum redundancy maximum 

relevance), implemented using the FEAST toolbox [193-195]. The performance of each 

model was optimized for up to the top 50 features. The RNAseq data contained 1,414,819 

unique count values, and the vast majority of values were observed only once. Due to this 

high dynamic range and memory limitations, the count values of the unscaled RNAseq 

data were binned prior to performing mRMR. The number of binned levels was chosen to 

balance performance and computational cost; 30,000 binned levels were the best 

alternative given the available computational resources.   

In the wrapper approach, sequential forward feature selection (SFS) was 

performed. Model performance was optimized for up to the top 20 features. Due to the 

large number of genes in the RNAseq data, SFS was performed only after initial filtering 

based on differential expression. The input to SFS was the 654 genes found to be 

differentially expressed by edgeR and EBSeq in combination.   

 

Data Scaling 

Due to the high dynamic range of features in RNAseq data, two data scaling 

methods were tested. In the first – denoted scaled (1) – each feature was scaled by 
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dividing by the maximum value observed for that feature across any sample. In the 

second – denoted scaled (2) – each feature was scaled by subtracting its mean and 

dividing by its standard deviation, as suggested in [196]. The predictive modeling results 

for RNAseq with SFS are from unscaled data. For the differential expression and mRMR 

feature selection techniques, the best result among the two alternative scaling choices and 

unscaled data is shown.  

 

Integrated Analysis 

One of the fundamental goals of systems biology is to integrate information from 

multiple levels of biological complexity in order to increase actionable biological and 

clinical knowledge. However, this is a very challenging task. Several studies have 

demonstrated that mRNA and protein expression levels generally exhibit only moderate 

linear correlation; that is, mRNA expression may predict protein expression to a partial 

extent, but protein expression is also influenced by regulation at the post-transcriptional 

and post-translational levels [197-200]. Thus, models developed by integrating mRNA 

and protein features in some manner may potentially show improved performance over 

models using individual data types only. In a recent review, Haider and Pal discussed 

eight frameworks for performing integrated analysis of transcriptomic and proteomic 

data: union of data types, comparison of functional contexts, topological network 

analysis, merging datasets in individual domains, missing value estimation, multiple 

regression analysis, clustering, and dynamic modeling [201]. Due to the constraints of the 

available data, the techniques of merging datasets in individual domains, missing value 

estimation, multiple regression analysis, and dynamic modeling are not possible. In this 
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chapter, I examine model development based on the first two remaining methods: 

combination of the two data types and the results of functional assessment.  

In the first case, RPPA and scaled RNAseq data were naively combined into a 

composite dataset. One dataset contained 221 features (113 RPPA and the 108 common 

RNAseq features) and the other contained 767 features (113 RPPA and the 654 union 

RNAseq features). SVM, KNN, and decision tree models with SFS were constructed 

using nested CV, with a maximum of 20 features. The better result among the two 

RNAseq scaling methods is reported.  

In the second case, functional analysis of the genes corresponding to RNAseq and 

RPPA features in the best-performing models was performed using DAVID [202, 203] 

and the Reactome Analysis Tool [204]. I hypothesized that, if an ensemble of these 

models was created, individual models representing different functional categories would 

yield better-performing ensembles. This was tested by systematically evaluating all 

possible ensembles from nine SFS models: SVM, KNN, naïve Bayes, decision tree, and 

Adaboost using RPPA data, and SVM, KNN, decision tree, and Adaboost using RNAseq 

data. Ensemble decisions followed a majority voting scheme, and mean MCC values 

were compared across 100 repetitions of 10-fold CV.  

4.4. Model Performance 

4.4.1. Individual Data Types 

Table 4.2 shows the predictive model performance of the six classifiers on the 

RPPA data. In general, performance is moderate, with several models achieving mean 

MCC values greater than 0.4 and AUC values greater than 0.7. The best performing  
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Table 4.2: Performance evaluation of alternative predictive models across feature 

selection methods for RPPA data 

Classification 

Method 
 Rank-Sum Test mRMR SFS 

  MCC AUC MCC AUC MCC AUC 

SVM  0.43±0.15 0.75±0.11 0.37±0.21 0.74±0.08 0.54±0.21 0.77±0.06 

Naïve Bayes  0.32±0.18 0.71±0.09 0.33±0.13 0.71±0.13 0.47±0.19 0.65±0.12 

Decision Tree  0.16±0.17 0.64±0.13 0.12±0.27 0.62±0.11 0.40±0.20 0.68±0.11 

KNN  0.35±0.28 0.74±0.13 0.28±0.13 0.77±0.09 0.46±0.22 0.73±0.11 

Adaboost  0.11±0.24 0.71±0.11 0.25±0.34 0.71±0.14 0.45±0.13 0.71±0.11 

Random 

Forests 

 MCC AUC 

 0.04±0.16 0.65±0.10 
 

RPPA model was SVM with SFS feature selection. The SVM models outperformed the 

other classifiers for all feature selection methods on the RPPA dataset, and the SFS 

models outperformed the other feature selection methods for all classifiers. The naïve 

Bayes and KNN models were the next best in performance, while the decision tree 

models did not perform as well. The two ensemble classifiers showed markedly different 

performance. For mRMR and SFS, Adaboost outperformed the decision tree models, 

although it did not perform as well as the other individual classifiers. The Random 

Forests classifier gave surprisingly poor performance for the RPPA data, with an MCC 

value close to zero.  

Table 4.3 shows the predictive model performance of five classifiers on the 

RNAseq data. The best RNAseq models, which achieve mean MCC values greater than 

0.6, outperform the best RPPA models. Again, the SFS models outperformed the other 

feature selection methods for all classifiers. The highest performing RNAseq model was 

KNN with SFS; the Adaboost and SVM models with SFS performed almost as well in 

terms of MCC, though the SVM AUC value was non-informative. The Random Forests 

model for RNAseq data showed better mean performance than that for RPPA data, but it 

also had a large standard deviation. For differential expression and mRMR feature 
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Table 4.3: Performance evaluation of alternative predictive models across feature 

selection methods for RNAseq data. Legend: unscaled, scaled (1), scaled (2). 

Classification 

Method 
 

Differential 

Expression 
mRMR DEG+SFS 

  MCC AUC MCC AUC MCC AUC 

SVM  0.52±0.27 0.91±0.11 0.42±0.27 0.50±0 0.62±0.22 0.50±0 

Decision Tree  0.23±0.22 0.62±0.11 0.36±0.26 0.69±0.12 0.52±0.14 0.74±0.11 

KNN  0.35±0.22 0.67±0.08 0.26±0.27 0.68±0.09 0.64±0.20 0.83±0.10 

Adaboost  0.27±0.28 0.66±0.12 0.32±0.23 0.73±0.10 0.62±0.13 0.73±0.14 

Random 

Forests 

 MCC AUC 

 0.30±0.30 0.79±0.10 
 

selection, the SVM models outperformed the other classifiers in terms of MCC. Under 

these two feature selection methods, the decision tree and Adaboost models showed 

better performance for RNAseq data than for RPPA data, but KNN was not notably 

different. In the majority of cases, scaled data showed better performance, and the second 

scaling method was more often better than the first.   

4.4.2. Commonly Selected Features and Functional Analysis 

The existence of well-performing models implies that the selected features are of 

functional importance. The five RPPA SFS models were compared, and 11 features were 

selected in at least two models. All of these have been associated with HNSCC in the 

literature: AR [205], C-Raf [206], CDK1 [207], Cyclin B1 [208], MAPK_pT202_Y204 

[1], N-Cadherin [209], PDK1 [210], PI3K-p85 [211], VEGFR2 [212], c-Jun_pS73 [213], 

and p27_pT198 [214]. In particular, AR was selected by four models, CDK1 and Cyclin 

B1 by three, and the others by two. Table 4.4 shows the number of total common features 

between each model pair. The low counts show that some models achieved comparable 

performance using very different feature sets. Even greater feature diversity was observed 

for the RNAseq SFS models. Among the four models, 52 features were present in total, 

but only two features were selected in more than one model: FAM27B and KRTAP17-1.  
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Table 4.4: Comparison and functional analysis of the RPPA SFS models:  

The number of features, GO functional annotations, and pathways (KEGG and 

Reactome) in common between different models are indicated. 

 SVM Naïve Bayes Decision 

Tree 

KNN Adaboost 

SVM 

Features: 18 

GO terms: 10 

KEGG: 11 

Reactome: 209 

- 

Features: 2 

GO terms: 2 

KEGG: 0 

Reactome:93 

Features: 2 

GO terms: 1 

KEGG: 9 

Reactome:139 

Features: 4 

GO terms: 0 

KEGG: 7 

Reactome:86 

Features: 2 

GO terms: 0 

KEGG: 0 

Reactome:67 

Naïve Bayes 

Features: 14 

GO terms: 5 

KEGG: 0 

Reactome: 112 

- - 

Features: 3 

GO terms: 4 

KEGG: - 

Reactome:97 

Features: 1 

GO terms: 0 

KEGG: - 

Reactome:82 

Features: 1 

GO terms: 0 

KEGG: - 

Reactome:59 

Decision Tree 

Features: 11 

GO terms: 15 

KEGG: 25 

Reactome: 208 

- - - 

Features: 2 

GO terms: 1 

KEGG: 12 

Reactome:103 

Features: 1 

GO terms: 0 

KEGG: - 

Reactome:71 

KNN 

Features: 15 

GO terms: 1 

KEGG: 12 

Reactome: 126 

- - - - 

Features: 2 

GO terms: 0 

KEGG: - 

Reactome:56 

Adaboost 

Features: 8 

GO terms: 0 

KEGG: 0 

Reactome: 131 

- - - - - 

 

Functional analysis of the SFS feature sets was performed via DAVID and 

Reactome. DAVID was used to find significantly enriched Gene Ontology (GO) terms 

and KEGG pathways, while Reactome also returned significant pathways. In terms of 

specific features and GO terms, the five RPPA SFS models were diverse, with relatively 

few commonalities. However, many common pathways were found, both through KEGG 

and through Reactome. Seven KEGG pathways were common among the SVM, decision 

tree, and KNN RPPA models. These consisted of three signaling pathways: ErbB, 
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neurotrophin, and insulin signaling, and four cancer-related pathways: pathways in 

cancer, colorectal cancer, pancreatic cancer, and chronic myeloid leukemia. Reactome 

returned many more significant pathways than DAVID, and 46 pathways were in 

common among all five models. Most of these related to signal transduction and mitotic 

progression.  

Notably, there were no results in DAVID for the four RNAseq feature lists from 

the SFS models. Reactome returned results for only the KNN RNAseq model. The nine 

pathways identified fell into four categories: regulation of gene expression and 

development in beta cells, visual transduction and phototransduction, retinoid metabolism 

and transport, and the synthesis of bile acids and bile salts. Retinoids are important 

therapeutics for many cancer types, including HNSCC [215], and recent studies have 

shown that bile acids may be associated with head and neck cancer [216, 217].  

4.4.3. Integrated Analysis 

The results for developing SFS models based on naïve combination of the RPPA 

and RNAseq datasets are shown in Table 4.5. All of the models outperformed the 

corresponding RPPA SFS models for the same classification method in terms of mean 

MCC values. However, only the SVM models showed improvement over the RNAseq 

SFS models as well. Moreover, only the models for the smaller composite dataset (221 

features) utilized both RPPA and RNAseq features. The RPPA features selected by the 

SVM model for the smaller composite dataset were Cyclin B1 and p38_pT180_Y182. 

Cyclin B1 was one of the commonly selected features among the RPPA SFS models; p38 

is a mitogen-activated protein kinase that has also been associated with HNSCC [218]. 

The models for the larger composite dataset (767 features) selected only 
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Table 4.5: Performance evaluation of alternative predictive models using two composite 

RPPA and RNAseq datasets. Legend: scaled (1), scaled (2). 

Classification 

Method 
 SFS (221 features) SFS (767 features) 

  MCC AUC MCC AUC 

SVM  0.68±0.15 0.82±0.09 0.70±0.21 0.82±0.14 

Decision Tree  0.50±0.20 0.75±0.13 0.46±0.16 0.69±0.10 

KNN  0.53±0.21 0.77±0.11 0.64±0.26 0.83±0.13 

 

RNAseq features. Thus, the improvement in MCC seen for the best-performing model 

(SVM with the larger composite dataset) cannot be attributed to integrating data types, 

but may be due in part to using scaled data.  

Figure 4.2 compares the performance of single-data type models (RPPA and 

RNAseq) with ensembles comprised of only RPPA models, only RNAseq models, or 

both. The last category contains all possible ensembles with three to nine member 

models. Results represent the mean performance of 10-fold CV for the 209 common 

patients in the RPPA and RNAseq datasets, across 100 repetitions. The best single-data 

type ensembles had higher mean MCC values than individual models of that data type. 

Additionally, combination ensembles of multiple sizes were found which had better 

performance than any of the single-data type ensembles.  

The performances of the RPPA-only ensembles were compared in terms of the 

previous functional analysis results. For example, the best performing RPPA-only 

ensemble (SVM, KNN, Adaboost) achieved a mean MCC value of 0.54, and 50 

Reactome pathways were in common among the three feature sets. The worst-performing 

ensemble (SVM, Naïve Bayes, decision tree) had a mean MCC of 0.25 and 86 Reactome 

pathways in common. Among the RPPA-only ensembles overall, a correlation of -0.44 

was observed between the mean MCC values and the number of Reactome pathways in 
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Figure 4.2: Comparison of individual and ensemble model performances over 100 

repetitions of 10-fold CV. Combination ensembles, which allow for heterogeneity in both 

data type and component model type, outperform RPPA-only and RNAseq-only models. 

 

common among the ensemble member models. 

While the RNAseq ensembles had the highest median performance, several 

combined RPPA and RNAseq ensembles had higher overall performance. Among all of 

the ensembles tested – RPPA only, RNAseq only, and combination – 27 ensembles were 

identified which had better performance than the best-performing individual RNAseq 

model in more than 90 of the 100 CV repetitions. Of these, two were RNAseq-only 

ensembles. Another two were combination ensembles containing three and four models, 

respectively, in which only RNAseq models were chosen as members. The other 23 

notable ensembles all contained both RPPA and RNAseq member models.  

Among these 23 was the best performing ensemble overall, which achieved a 

mean MCC value of 0.80. This is higher than any of the model performances reported for 

previous tests. Steiger’s Z test was used to compare the MCC performance of this 
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ensemble model with those of the highest performing RNAseq (KNN) and composite 

(SVM) models [219]. In both cases, the improvement was statistically significant (p < 

0.01). This particular ensemble incorporated the Adaboost RPPA SFS model and the 

SVM, KNN, and Adaboost RNAseq SFS models. 

4.5. Discussion and Key Innovations 

In this study, I have performed an in-depth analysis of HNSCC RPPA data by 

implementing six different classification methods, using nested cross-validation to 

optimize parameters, and testing three alternative feature selection methods. This 

supervised approach contrasts with previous HNSCC studies using RPPA data, which 

have conducted unsupervised and differential expression analyses [180, 181]. It also 

differs from previous supervised studies on RPPA data [182, 183] in two ways. First, this 

study assesses the performances of several different combinations of feature selection 

methods and classification algorithms in order to identify the potentially relevant protein 

feature sets. Second, this study builds upon current research by developing integrated 

proteomic and transcriptomic models, and comparing them to RPPA-only and RNAseq-

only models. In particular, I performed two types of integrated analysis: one by direct 

combination of RPPA and RNAseq data, and another by constructing ensemble models 

using both data types. To my knowledge, this is the first such comparative, integrated 

study for modeling progression in HNSCC.  

From a modeling perspective, this study identified the integrated ensemble 

approach with both RPPA and RNAseq models as the best overall. The top-performing 

model for predicting HNSCC pathological stage was obtained using this approach, and 

had a statistically significant higher MCC value than the best performing individual 
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RNAseq and composite models. Notably, modeling results appear to support the initial 

conjecture that less functional agreement among the feature sets of member models will 

be associated with better performance. First, the RNAseq-only and the combination 

RPPA and RNAseq ensembles were observed to outperform the RPPA-only ensembles. 

Second, a moderate negative correlation was observed between the performances of 

RPPA-only ensembles and the numbers of common Reactome pathways among ensemble 

members. These observations indicate that higher-performing ensembles tended to be 

more functionally diverse in terms of member model feature sets. Investigation on larger 

datasets, as well as assessment using ensemble diversity measures and different ensemble 

construction techniques [220], are directions for further research. More rigorous 

examination of how and why different classifier and feature selection method 

combinations tend to vary in performance on RPPA and RNAseq data is also an 

important task.  

A related question of interest is performing multi-class classification to study bio-

molecular expression patterns among individual HNSCC stages, rather than grouping 

them into early and advanced disease. Another is investigating the differences between 

normal and early stage HNSCC samples. For investigating these questions, the 

availability of sufficiently large – in terms of both patients and features – public datasets 

is a constraint. While matched tumor and normal RNAseq data is available on TCGA for 

HNSCC, RPPA data for matched normal samples is yet unavailable. In addition, an 

inherent limitation of RPPA data is that only a selected set of proteins is measured. A 

larger set of proteins could enable discovery, in that proteins which were previously not 

implicated in HNSCC – or cancer in general – might be identified as informative features 
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through modeling. TCPA is currently in the process of extending their antibody set to 

cover 500 proteins [126], which will help to address this limitation to some extent. The 

availability of more extensive proteomic data for HNSCC through mass spectrometry is a 

related promising avenue. The Clinical Proteomic Tumor Analysis Consortium 

(CPTAC), like TCPA, is currently building a proteomic complement to TCGA. CPTAC 

hosts a library of LC-MS/MS data from tumor samples that are also in TCGA. At the 

time of writing, data from breast cancer, ovarian cancer, colon adenocarcinoma, and 

rectum adenocarcinoma have been released. Future availability of such data for HNSCC 

would be valuable to researchers.  

From a systems biology perspective, investigating multiple types of –omic 

datasets to gain insight into disease processes is an important area of research. Numerous 

individual proteins and genes selected as features in well-performing models in this study 

have been previously associated with HNSCC in the literature, including in a recent 

large-scale study by The Cancer Genome Atlas Network [221]. Additionally, functional 

analysis of the features selected in the top-performing models revealed notable patterns. 

Many processes – e.g., signal transduction pathways including those through EGFR and 

ERBB2, and events related to mitotic progression – were commonly represented among 

the RPPA model features. The RNAseq feature sets were much more diverse, but some of 

the associated biological processes have still been linked with HNSCC in the literature.  

While this integrative modeling study of RPPA and RNAseq data can provide 

guidance for further research, integration in general should be interpreted with caution. 

Because RPPA is a tool for functional proteomics, it is several biological steps removed 

from the mRNA counts measured by RNAseq, and mRNA is itself distinct from genome-
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level factors. Thus, further investigation into additional data types – e.g., copy number 

variations, mutations, DNA methylation, protein subunits and alternative activation 

states, metabolites – is needed for drawing conclusions about the specific mechanisms 

underlying HNSCC progression. Appropriate comparison and combination of multiple 

data types will help to fill in the gaps and provide greater insight into the process of 

disease development. By harnessing the diverse data from initiatives like TCPA, TCGA, 

and CPTAC, bioinformatics studies can lead to better understanding of the molecular 

bases of HNSCC and also other cancers.  

The Key Innovations of this chapter are: 

 Performed the first supervised modeling study for modeling progression in 

HNSCC by integrating both proteomic and transcriptomic data 

 Developed between-omic level integrated ensemble models with significant 

improvement in performance for predicting HNSCC pathological stage 
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CHAPTER 5 

SUPERVISED LEARNING MODELS FOR EARLY DETECTION 

USING TRANSCRIPTOMIC DATA MODELS  

5.1. Transcriptomic Modeling Research in HNSCC 

Investigation of gene expression patterns in HNSCC is an active area of research, 

with numerous studies conducted using gene expression microarrays within the last 10 

years [222].  More recently, transcriptomic research has shifted towards RNA sequencing 

(RNAseq) because of its high sensitivity and dynamic range [223]. However, due to 

variations in the sample population, small samples sizes, and differences in experimental 

design and analysis methods, different transcriptomic studies on the same disease may 

report notably different lists of significant or key genes [224]. For this reason, integrated 

analysis of multiple transcriptomic studies is necessary for identifying consistent, 

fundamental gene expression patterns that indicate HNSCC status.  

Previous predictive modeling studies have applied gene expression data to various 

problems related to HNSCC, including predicting metastatic disease [225, 226], the 

development of cancer in patients with oral premalignant lesions [38, 39], and the risk of 

recurrence and relapse [227, 228]. A key aspect of HNSCC research is early detection: if 

the cancer is detected at an early stage, patient response to treatment is relatively high, 

and five year survival rates for multiple disease subsites exceed 80% [14, 37]. However, 

most cases are detected only at locally advanced stages, which are associated with much 

worse outcomes. For the same disease subsites, survival for locally advanced cases 

ranged from 49.8-73%. Current screening recommendations for oral cancer are based on  
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Figure 5.1: Modeling workflow describing roles for microarray, RNAseq (all stages) and 

early-stage RNAseq datasets 

 

conventional visual and tactile examinations [229]. Effective supervised models for 

predicting HNSCC status – and in particular, for differentiating early-stage HNSCC 

patients from healthy individuals – based on molecular data could be useful clinical tools.  

In this chapter, I present an integrated transcriptomic analysis of HNSCC, with 

the goal of developing robust predictive models for determining disease status. Because 

the lack of early stage samples is an obstacle, models are initially developed for 

predicting HNSCC status in general, and are then applied to predict early stage HNSCC 

in particular. The workflow for this study is shown in Figure 5.1. First, differential 

expression (DE) analysis was performed on several microarray datasets to identify 

common DE genes and to investigate the extent of variation among datasets. Second, 

classification models optimized on one microarray dataset were implemented on the 

others, in order to evaluate within-platform model robustness. Third, individual and 
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ensemble classification models developed using the microarray datasets were applied to 

RNAseq data, to test (i) between-platform robustness, i.e., if informative gene feature sets 

and model structures are transferrable across data types and (ii) performance in detecting 

early stage HNSCC. Finally, well-performing models were integrated into a software tool 

with a graphical user interface in order to make predictive models more accessible to 

HNSCC researchers and clinicians.  

5.2. Microarray and RNAseq Datasets 

Gene expression microarray datasets were obtained from the Gene Expression 

Omnibus (GEO) and ArrayExpress public repositories. To increase consistency in the 

downstream analysis, datasets selected for study met the following criteria: (i) data was 

from patient samples, not cell lines; (ii) data from both diseased and normal samples were 

available; (iii) the raw, unprocessed data was available; (iv) an associated publication was 

available; and (v) Affymetrix array platforms were used. These filtering steps led to five 

candidate Affymetrix datasets. Of these, three were chosen for further analysis because 

they shared the Human Genome U133 Plus 2.0 (54,675 probes) or U133A (27,777 

probes) arrays, enabling direct comparison of probes. Only the 22,277 common probes 

were used for analysis. These datasets are described in Table 5.1. To obtain gene 

expression values, the raw .CEL files were processed with RMA in the Affymetrix 

Expression Console software.  

Table 5.1. Description of gene expression microarray datasets examined in study 

Dataset  Affymetrix Array Platform Samples Reference 

E-GEOD-9844  Human Genome U133 Plus 2.0  25 cancer, 12 normal [125] 

E-GEOD-6791  Human Genome U133 Plus 2.0  42 cancer, 11 normal 

 

[230] 

E-GEOD-23036 Human Genome U133A 2.0  63 cancer, 5 normal [231] 
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RNAseq data (Version 2) for HNSCC was obtained from The Cancer Genome 

Atlas (TCGA), along with associated clinical data. The data has been aligned using 

MapSplice and quantified using RSEM [189, 190]. Count data for 20,531 genes are 

available in this dataset. Un-normalized data was used for DE analysis, and normalized 

data for classification. At the time of analysis, matched tumor and normal RNAseq data 

was available for 40 patients. Of these, 17 patients were categorized as early stage 

(pathological stages I and II).   

5.3. Model Development 

 

Differential Expression Analysis and Feature Selection  

Both the two-sample t-test and Wilcoxon rank-sum test were used to identify DE 

genes between the HNSCC and normal samples in the microarray datasets. Multiple  

 

 

Figure 5.2: Schematic of nested cross-validation (nested CV) framework 
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testing correction was implemented by controlling the False Discovery Rate (FDR ≤ 

0.05) or by implementing Bonferroni correction (αBonferroni = 0.05). DE analysis was 

performed on the RNAseq data using edgeR (FDR ≤ 0.05) [192]. To evaluate consistency 

in gene expression patterns across datasets, the DE gene lists were compared to each 

other. For classification, features were selected via mRMR (minimum redundancy 

maximum relevance) from the microarray datasets, implemented using the FEAST 

toolbox in MATLAB [193-195]. The performance of each classification model was 

optimized for up to the top 50 features.  

 

Binary Classifiers 

Three binary classification methods were tested: k-nearest neighbors (KNN), 

support vector machine (SVM), and decision tree (DT). Optimal parameters for each 

model were selected via grid search from the ranges shown in Table 5.2, using a nested 

cross-validation scheme as shown in Figure 5.2. Optimization was performed with 

respect to the Matthews correlation coefficient (MCC), and the area under the ROC curve 

(AUC) is also reported for optimized models. All analyses were performed using 

MATLAB (Mathworks, Natick MA).  

 

Table 5.2. Classification model parameters examined via nested cross-validation 

Classification 

Method 

Parameters Set of values 

KNN Number of neighbors (K)   [                    ] 

SVM Kernel 

Soft margin cost (C) 

  for GBRF  

Kernels: linear, Gaussian radial basis function 

(GRBF) 

C   2
m
, m   [-2,-1,0,1,2] 

  2
m
, m   [-2,-1,0,1,2] 

Decision Tree (DT) Splitting criterion Criteria: Gini diversity index (GDI), Twoing rule, 

Maximum deviance reduction (MDR) 
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5.3.1. Evaluation of Model Robustness across Microarray Datasets 

The robustness of each model was first evaluated by testing the model on the 

other microarray datasets, i.e., those which were not used in its development. In order to 

avoid the issue of batch effects entirely, models were not applied to other datasets 

directly. Instead, the model parameters and feature set associated with the top performing 

model of each classifier type for dataset i were used to train a model on dataset j     

  , with      [      ], where n is the number of microarray datasets. In addition, this 

comparison was also carried out after combining the feature sets for alternative models. 

For example, such a model to be tested on E-GEOD-6791 would combine the optimized 

feature sets for both E-GEOD-9844 and E-GEOD-23036. The rationale behind this 

experiment is to test whether a composite feature library, defined as the union of optimal 

feature sets from multiple datasets, would help to improve average predictive 

performance on new incoming datasets.  

 

Application of Microarray-Developed Models to RNAseq Data 

Next, model robustness across data formats was investigated by applying 

microarray-developed models to RNAseq data from TCGA. As described for the 

microarray-only cross-performance tests, the model parameters and feature set associated 

with a given microarray model was used to train a model on the RNAseq data. In order to 

transfer the optimized microarray feature sets, microarray probes were mapped to 

RNAseq features on the level of gene symbols.  

In addition to testing the performance of the nine individual and nine possible 

feature combination-based models on RNAseq data, two ensemble modeling frameworks 
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– majority voting and stacking [220] – were tested. Majority voting is the simplest 

ensemble framework; given a set of predicted labels from alternative models, the 

ensemble-predicted label is the most-commonly predicted label. All possible 

combinations of the nine individual microarray models (three classifier types for three 

datasets) with at least three members were considered for voting-based ensembles, 

resulting in 511 alternative models. Stacking involves a two-step classification process. 

In the first step, label predictions are obtained from alternative models on the training 

data. This set of predicted labels serves as the features for a second classification model, 

which is used to generate the final predictions. Three stacking models were developed, 

using all nine individual microarray models as the first-level predictors, and SVM, KNN, 

and DT were tested as the three second-level classifiers. 

 

Tool Design 

The developed predictive models were integrated into a software tool with a 

graphical user interface (GUI) to make them more accessible to HNSCC researchers, and 

for easy application to new datasets. Users can apply previously developed individual or 

ensemble models to process incoming datasets, and then visualize and export the results.   

5.4. Model Performance 

Comparison of DE Gene Lists and mRMR Selections 

Notable differences were observed among the DE genes selected in each 

microarray dataset, as shown in Table 5.3. The more conservative Bonferroni method 

resulted in only 5 common DE genes among the three datasets: MMP1, ABCA8, MYO1B, 

ARHGEF10L, and SASH1; all of these have been associated with HNSCC in recent 
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Table 5.3. Comparison of DE Genes across Microarray Datasets 

 E-GEOD-6791 E-GEOD-9844 E-GEOD-23036  Common DE 

Genes 

 Bonferroni FDR Bonferroni FDR Bonferroni FDR  Bonferroni FDR 

T-test 213 5763 84 2451 273 3154  5 682 

Rank-

sum test 

14 6836 5 2759 0 3401  0 785 

 

literature [125, 231-234]. When applying FDR, more than 600 common DE genes were 

identified across the three datasets for both statistical tests. Functional analysis was 

performed on the common FDR gene lists using DAVID [202]. Although not statistically 

significant, the top 10 Gene Ontology (GO) terms selected for both sets included 

GO:0006915~apoptosis, GO:0008219~cell death, GO:0012501~programmed cell death, 

GO:0016265~death, GO:0043588~skin development. Overall, these results indicate that 

while there is substantial variation across the microarray datasets, the commonly-selected 

DE genes are relevant to HNSCC.  

This variation was also observed for the RNAseq data: 10,239 DE genes were 

identified in the RNAseq data through edgeR; 526 and 610 of these genes overlapped 

with the microarray common DE gene lists (FDR) for the t-test and rank-sum test, 

respectively. Some of the commonly selected DE features were also represented in the 

mRMR feature lists. The common DE genes selected using either test with FDR were 

compared with the top 50 mRMR-selected features for the three microarray datasets. The 

number of features in the intersection of these lists ranged from 17 to 23.  

5.4.1. Model Performance across Microarray Datasets 

Table 5.4 shows the performance of KNN models developed using one 

microarray dataset on the others. The top three rows show the performance of the KNN 

model optimized through nested CV for each dataset. For example, the best-performing 
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Table 5.4. Multi-Dataset Performance of KNN Models in terms of MCC (AUC) 
Data for Model Development  Prediction Dataset 

E-GEOD-

6791 

E-GEOD-

9844 

E-GEOD-

23036 
 E-GEOD-6791 E-GEOD-9844 

E-GEOD-

23036 

●    
1±0  

(1±0) 

0.89±0.10  

(0.94±0.06) 

-0.08±0.03 

(0.54±0.01) 

 ●   
0.71±0.14 

(0.98±0.02) 

0.95±0.09 

(1±0) 

1±0  

(1±0) 

  ●  
0.33±0.27 

(0.68±0.19) 

0.75±0.11  

(0.85±0.04) 

1±0 

 (1±0) 

 
 Average Cross-Dataset Performance 

 0.52 0.82 0.46 

● ●   - - 
0.90±0.18 

 (1±0) 

●  ●  - 
1±0  

(1±0) 
- 

 ● ●  
0.84±0.17 

(0.95±0.05) 
- - 

 

KNN model on the dataset E-GEOD-6791 was developed using the same dataset. This 

resulted in perfect performance on testing data, with MCC and AUC values of 1±0. The 

same model (i.e., KNN with a given parameter set and feature set) also performed well 

when applied to another dataset, E-GEOD-9844, giving MCC and AUC values of 

0.89±0.10 and 0.94±0.06. However, when applied to the third dataset, E-GEOD-23036, 

very poor performance was observed, with the mean MCC near zero and the mean AUC 

near 0.5. This example demonstrates the lack of model robustness across datasets. Similar 

patterns are observed for the other datasets for KNN, as well as for the DT and SVM 

models in Tables 5.5 and 5.6, respectively.  

The lower three rows of Table 5.4 show the model performances resulting from 

combining the optimal feature sets of the other two models. For example, the bottom-

most row shows that using the combined optimal feature sets of the E-GEOD-9844 and 

E-GEOD-23036 KNN models to develop a KNN model for E-GEOD-6791 resulted in 

MCC and AUC values of 0.84±0.17 and 0.95±0.05, respectively. While this is lower than 
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Table 5.5. Multi-Dataset Performance of DT Models through MCC (AUC) 
Data for Model Development  Prediction Dataset 

E-GEOD-

6791 

E-GEOD-

9844 

E-GEOD-

23036 
 E-GEOD-6791 E-GEOD-9844 

E-GEOD-

23036 

●    1±0 (1±0) 
0.88±0.10 

(0.94±0.06) 
0±0 (0.5±0) 

 ●   
0.93±0.12 

(0.94±0.10) 

0.76±0.11 

(0.86±0.10) 
1±0 (1±0) 

  ●  
-0.07±0.09 

(0.62±0.11) 

0.82±0.19 

(0.90±0.10) 
1±0 (1±0) 

 
 Average Cross-Dataset Performance 

 0.43 0.85 0.50 

● ●   - - 1±0 (1±0) 

●  ●  - 
0.88±0.10 

(0.94±0.06) 
- 

 ● ●  
0.93±0.12 

(0.94±0.10) 
- - 

 

Table 5.6. Multi-Dataset Performance of SVM Models through MCC (AUC) 
Data for Model Development  Prediction Dataset 

E-GEOD-

6791 

E-GEOD-

9844 

E-GEOD-

23036 
 E-GEOD-6791 E-GEOD-9844 

E-GEOD-

23036 

●    1±0 (0.5±0) 
0.89±0.10 

(0.54±0.07) 

0.09±0.31 

(0.5±0) 

 ●   
0.85±0.14 

(0.98±0.03) 

0.89±0.10  

(1±0) 

0.90±0.18 

(1±0) 

  ●  
0.51±0.28 

(0.82±0.12) 

0.88±0.10 

(0.99±0.02) 
1±0 (1±0) 

 
 Average Cross-Dataset Performance 

 0.68 0.89 0.50 

● ●   - - 
0.90±0.18 

(1±0) 

●  ●  - 
0.89±0.10 

(0.5±0) 
- 

 ● ●  
0.76±0.22 

(0.98±0.03) 
- - 

 

the performance of the optimal model developed for E-GEOD-6791 itself, it is higher 

than the average cross-dataset performance observed from applying either of the two 

other models to this dataset. For this particular group of datasets, E-GEOD-6791 and E-

GEOD-23036 showed poor performance during cross-prediction tests with the other, 

while E-GEOD-9844 showed more stable performance. Similar trends for cross-

prediction are shown for all classifiers tested. Overall, utilizing a composite feature set 
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aggregated from multiple models appears to yield more robust predictions for previously 

unseen data. 

5.4.2. Performance of Microarray-Developed Models on RNAseq Data 

Overall, individual (non-ensemble) models developed using microarray data 

performed reasonably well on RNAseq data, as shown in Figure 5.3. This experiment 

tracks the distribution of mean MCC values of each model category across 100 

repetitions of 3-fold CV on the RNAseq dataset. The median performance of the KNN, 

DT, and SVM models when applied to the RNAseq data was 0.73, with the best results 

for any CV repetition approaching 0.86 (result set (a)). The feature combination approach 

(b) showed a slight increase in median performance, but also resulted in many low-

performing outliers. Voting using single-classifier models (c-e) showed slight increases 

in median performance – the KNN-only and DT-only ensembles achieved median 

performances of 0.78, and the SVM-only ensemble reached 0.81 – and also increases in 

 
Figure 5.3: Comparison of alternative individual and ensemble models developed from 

microarray data when applied to predict HNSCC vs. normal samples from RNAseq data.  
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Figure 5.4: Comparison of alternative individual and ensemble models developed from 

microarray data when applied to predict early stage HNSCC vs. normal samples from 

RNAseq data.  

 

the minimum performance. The combination voting approaches (f-l) had a trend of 

slightly increasing median performance and of lower variation as the number of models 

in the combination increased. The seven-, eight-, and nine-member ensembles had best 

overall median performances, ranging from 0.85-0.87. Among the stacking ensembles 

(m-o), the best median performance was observed with KNN as the secondary classifier.  

In total, 42 models were developed which had better performance than the best-

performing individual model (mean MCC = 0.8599) in at least 50 of the 100 CV 

repetitions. These models were part of the five-, six-, seven- and nine-member voting 

ensembles, which also had smaller amounts of variation than many of the other model 

categories. Most of these models had instances of statistically significant improvement 

         over the best-performing individual model, as assessed by Steiger’s Z-test 

[219].  
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Figure 5.4 shows the performance of the same models when applied to the early 

stage vs. normal RNAseq data, across 100 repetitions of 3-fold CV. Overall, 

performances are slightly lower and also more variable, reflecting the more challenging 

nature of the classification problem. Otherwise, similar trends were observed across the 

model categories. In terms of mean MCC, the median performance for the individual 

models (a) was 0.68. The median performances of the combination voting ensembles 

were in the range of 0.77-0.78.  Unlike in the previous experiment, no models had better 

performance than the best- performing individual model across any CV repetition (MCC 

= 0.89) for more than 50 of the 100 CV repetitions. This is due in part to the overall 

lower model performances in most categories, as well as the slightly higher value of the 

maximum individual performance for this experiment. However, almost all of the 

combination voting models and one stacking model (f-o) exceeded the median 

performance of the individual models.  

 

 

Tool Design 

The suite of microarray models was integrated into a MATLAB GUI that allows 

users to (i) load a new dataset of interest, (ii) select a model developed using previously 

examined datasets, or compare all models, and (iii) implement the selected model(s) and 

visualize and export the results. Figure 5.5 shows a screenshot of the interface. The goal 

of developing this system is to enable HNSCC researchers, particularly those from more 

clinical-oriented, non-computational backgrounds, to take advantage of predictive 

modeling resources developed by the computational research community. In particular, 

by gathering multiple models from different datasets together in a single tool, it becomes 
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Figure 5.5: Screenshot of tool interface, displaying import, analysis, visualization, and 

export capabilities. 

 

easier to implement ensemble approaches that improve overall performance.  

 

5.5. Discussion and Key Innovations 

Consistency among different studies lends support to research findings; in the 

same way, consistent performance among datasets increases confidence in a predictive 

model, and in the functional importance of the features that it utilizes. In this chapter, I 

developed predictive models for HNSCC using gene expression data that exhibit robust 

performance both within and between transcriptomic data types. Other recent 

transcriptomic HNSCC studies have also compared results across several datasets. De 

Cecco and colleagues used three microarray datasets to develop their model, and tested it 

on six other datasets, including TCGA RNAseq data [227]; however, the endpoint of 

interest in their study was risk of relapse, not diagnosis. Saintigny and colleagues tested 
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their model for risk of oral cancer development in leukoplakia patients on nine other 

microarray datasets [39]. In addition, neither of these studies considered multiple 

classification approaches and ensemble methods, as in this study. Ye and colleagues 

performed a meta-analysis across 63 HNSCC transcriptomic studies, considering 

premalignant lesions vs. normal samples, primary tumors vs. normal samples, and 

primary tumors vs. metastatic disease [125]; however, the study focused identifying key 

genes and pathways, and did not build predictive models. This study contributes to the 

existing literature on transcriptomic analysis for HNSCC by considering several 

alternative modeling frameworks for the endpoint of disease state, with an application of 

early diagnosis. Overall, multiple models with good performance (MCC ≥ 0.8, AUC ≥ 

0.8) were identified. In addition, I compared and identified ensemble strategies that 

increased model performance for differentiating both general and early HNSCC from 

normal samples.   

Another direction for further research is in the integration of protein and gene 

expression data for early HNSCC detection. Several recent studies have investigated the 

use of salivary RNA and/or proteins for detecting oral cancer [235-237]. Some of the 

salivary RNA markers validated in [235] – IL-1B, IL-8, and H3F3A – were also selected 

in the DE gene lists in this study, and IL-8 was one of the mRMR-selected features for E-

GEOD-9844. This observation is promising in both directions: applying other feature 

selection methods to the current group of datasets may reveal more previously-validated 

markers, and future validation studies may support the clinical relevance of features used 

in the current models. In addition, in Chapter 4, I have demonstrated that combining 

transcriptomic and proteomic models increases performance when predicting HNSCC 
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pathological stage [238]. Thus, models combining multiple –omic data types may also 

improve performance for early disease detection.   

While current results are encouraging, more systematic testing, comparison, and 

refinement of models will be possible with additional and larger datasets. The three 

microarray datasets investigated here collectively include only 158 samples, and the 

number of matched tumor-normal RNAseq samples currently available in TCGA is also 

limited. However, data availability – and particularly for early stage disease – is always a 

limitation in cancer research. Therefore, one of the design goals of the modeling tool is to 

continually update its collection of individual and ensemble models as users upload 

additional labeled transcriptomic data. In this sense, it can serve to accelerate 

translational research. In the process, the tool can also be expanded to accommodate data 

and models for other prediction endpoints, such as length of survival, recurrence, and 

response to alternative therapies. It can also consider specific subsets of HNSCC, such as 

HPV+ vs. HPV- disease [239]. Thus, it can become a central component of a future 

clinical decision support system for assisting in HNSCC diagnosis and treatment 

planning.  

The Key Innovations of this chapter are: 

 Performed within–omic level integrative modeling study using microarray and 

RNAseq data for detection of HNSCC  

 Translated ensemble models developed for discriminating between HNSCC and 

paired normal cases to the problem of early HNSCC detection 

 Implemented tool to facilitate model translation and use of ensemble 

transcriptomic models in the HNSCC research community 
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CHAPTER 6 

DYNAMIC SYSTEM MODELS FOR PREDICTION OF RESPONSE 

TO COMBINATION ADJUVANTS 

6.1. Chemoprevention in HNSCC 

Currently, HNSCC treatment options include surgery, radiation, chemotherapy, or 

combinations of these treatments [8]. Many patients with locally advanced (stage III/IV) 

disease respond favorably to initial treatment, but later experience locoregional 

recurrence, secondary primary tumor (SPT) development, or metastatic disease [9-13]. 

Chemoprevention is defined as the application of natural or synthetic agents to delay or 

prevent cancer progression. Adjuvant chemoprevention therapies have been shown to 

improve overall and disease-free survival in HNSCC; however, toxicity is a limiting 

factor [49, 240]. Therefore, the identification of safe, non-toxic adjuvant therapies for 

chemoprevention in HNSCC is of great clinical interest.  

Because of these characteristics, natural compounds from dietary agents are 

promising as chemoprevention adjuvants for HNSCC. The primary catechin found in 

green tea, (-)epigallocatechin gallate (EGCG), has been shown to be an effective 

antioxidant and has a wide range of effects on signal transduction pathways implicated in 

cancer [240]. It affects multiple processes including cell proliferation and division, 

angiogenesis, and apoptosis. Recent phase II clinical trials have indicated that green tea 

extract is effective in preventing oral cancer development in patients with premalignant 

oral lesions [241, 242]. However, the effects of EGCG alone are limited by low oral 

bioavailability [54, 55, 243]. Thus, the identification of effective combinations of EGCG 

and other natural compounds is of interest, since natural compound combinations may 
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yield more-than-additive effects while maintaining low toxicity profiles. For example, 

green tea catechin in combination with curcumin, which is found in turmeric, has been 

shown to have synergistic apoptotic activity in larynx carcinoma cell lines [56]. EGCG in 

particular has been shown to synergistically increase apoptosis in HNSCC cell lines when 

combined with luteolin, an antioxidant found in many green vegetables [244], as well as 

with resveratrol, which is found in grape skins and red wine [53].    

6.1.1. Prediction with Dynamic System Models 

Predicting effective combinations of natural compounds is challenging due to 

their multi-target effects on complex biochemical signaling networks. Mathematical 

modeling for cancer is a diverse and growing area of research; although inherently much 

simpler than the complex biological systems represented, models provide tools for 

predicting outcomes and generating testable hypotheses [58-60]. Mathematical models 

can assist chemoprevention research by relating the activities of individual and 

combination agents to cellular-level responses, such as proliferation, survival, and 

apoptosis. For example, my prior work involved developing an agent-based model to 

predict the response of an HNSCC cell line to the combination of paclitaxel and the anti-

angiogenic compound 2-methoxyestradiol  (2ME2) [245]. These types of models may 

help to advance clinical research via the generation of specific, testable hypotheses, i.e., 

the response to alternative drug combinations, as well as the prediction of specific 

therapeutic targets that could increase favorable responses. In addition to the previously 

mentioned model, for HNSCC, models have been developed to predict the effects of 

radiotherapy [246, 247], and some models do so by incorporating clinical imaging data 

[248-250]. Other models focus on optimizing radiotherapy-chemotherapy combination 
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treatments [251, 252], and yet another focus is the prediction of nanoparticle drug uptake 

[253]. However, these models do not take into account the molecular pathway-level 

processes by which natural compounds exert their effects. In addition, previous 

mathematical models for chemoprevention for multiple cancer types mainly focused on 

cost-effectiveness, not biological effectiveness, and considered the effects of 

conventional chemotherapeutics [254-256].  

To address this issue, this study develops a multi-scale dynamic model for 

predicting the response to natural compound chemoprevention agents in HNSCC, based 

on their targeted effects on signal transduction pathways. In computational cancer 

research, multi-scale dynamic models are those which describe behaviors at multiple 

spatial scales, and potentially also across different time scales. Possible spatial scales 

encompass the atomic, molecular, cellular, tissue, organ, and patient levels.  The model 

developed here describes behaviors at the molecular and cellular levels. The model is 

applied to predict the combination effects of EGCG and resveratrol in several HNSCC 

cell lines. I also demonstrate how the multi-scale design enables use of the model for 

hypothesis generation, including the prediction of specific pathway targets and potential 

effective natural compound combinations. In addition, the initially developed multi-scale 

ordinary differential equation (ODE) model is then coupled to an agent-based model 

(ABM), which enables natural compound response prediction in complex, heterogeneous 

cellular environments. These models provide groundwork for advancing research into 

safer, non-toxic chemoprevention adjuvants for HNSCC from a computational 

perspective.  
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6.2. Model Development 

6.2.1. Cell Lines and Dose Response Data 

Dose response data from three HNSCC cell lines – Tu212, Tu686, and SQCCY1 

– were used to develop and test the model. For Tu212, the percentage of apoptotic cells 

(early and advanced apoptosis) was measured for six dosage levels for resveratrol and 10 

dosage levels for EGCG, as shown in Figure 6.1. The combination response was 

measured for four levels: 30µM EGCG with 10µM or 15µM resveratrol (abbreviated 

E30R10 and E30R15, respectively) and 40µM EGCG with 10µM or 15µM resveratrol 

(E40R10 and E40R15). For Tu686 and SQCCY1, the combination response was 

measured for 12 levels each: 15µM or 20 µM resveratrol with 30, 40, 50, 60, 70, or 

80µM EGCG. 

 

Figure 6.1: Dose response data for the Tu212, Tu686, and SQCCY1 cell lines. Image 

courtesy of Dr. A.R.M.R. Amin at Winship Cancer Institute. 
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Modeling Workflow 

Available dose response data was separated into training and testing sets in order 

to estimate model parameters. Training data comprised of the EGCG-only and 

resveratrol-only dose response measurements, along with all but two of the combination 

responses. The remaining two responses were used for testing. For Tu212, ( 
 
)    

training-testing splits were evaluated, and for the other two cell lines, (  
 
)     splits 

were tested. Parameters were estimated by minimizing the root-mean-square error 

(RMSE) between the simulated and experimentally observed percentages of apoptosis. 

Two alternative optimization methods were tested, both with the constraint that all 

parameters be non-negative: sequential quadratic programming (SQP) and the genetic 

algorithm (GA). SQP is a deterministic, gradient-based optimization method in which a 

quadratic programming sub-problem is solved at each iteration. For SQP, a constant 

initial parameter estimate of         was used, where              [          ] . 

The GA is a direct-search optimization method which uses evolutionary mechanisms to 

explore the parameter space to approach a global minimum. The initial GA population 

had 1,250 entries, of which 250 were sampled from   [   ]; 250 were sampled from 

  [   ] , where   is twice the maximum value observed for the SQP-optimized 

parameters from any training-testing split for the Tu212 cell line; and 750 were obtained 

by adding normally distributed noise to the SQP-optimized parameters from all six trials 

for the Tu212 cell line:                           (  
       

  
)       [          ]. 

Pairwise Pearson correlations between optimal parameter estimates obtained through 

each trial and each optimization method were used to assess the consistency of estimates.  
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6.2.2. Single-Scale Models 

Two alternative models were considered to model the combination drug effects, 

using cellular-level processes only. In the first case, the living and apoptotic (both early 

and late apoptosis) cell dynamics are tracked by first-order ODEs, as shown in Table 6.1. 

EGCG and resveratrol effects are modeled through the apoptosis rate parameter       . 

The observed nonlinear effects are naively modeled through higher-order functions of 

natural compound concentrations.  

In the second case, the Combination Index (CI), a measure used to assess drug 

combinations, was applied, as shown in Table 6.2. The CI indicates whether the 

combined effect of two drugs is additive (CI = 1), synergistic (CI < 1), or antagonistic (CI 

> 1). Chou and Talalay related the CI to administered drug ratios [257, 258]. The training 

 

Table 6.1: Naïve ODE single-scale model 

 

[     ]  [      ]  [         ] 

 

 [      ]

  
          [      ]        [      ] 

 

 [         ]

  
       [      ] 

 

                   [   ]    [    ]

 ∑    [   ]  [    ]  
   

   

 

 

The population is 

divided into living and 

apoptotic cells. Early 

and late apoptotic cells 

are pooled together. 

 

Synergistic effects are 

naively modeled using 

higher-order 

concentration terms. 

 



www.manaraa.com

120 

 

data was used to estimate the CI value and the Hill function parameters. The combination 

effect E for the testing data was then estimated using Nelder-Mead simplex direct search.  

6.2.3. Multi-Scale Ordinary Differential Equation Model 

The multi-scale ODE model modifies the naïve single-scale model by defining the 

division rate parameter          and the apoptosis rate parameter        as functions of 

molecular species known to regulate these processes. In addition, the targeted effects of 

EGCG and resveratrol are modeled. Thus, both cellular-level and molecular-level factors 

are considered. The molecular-level model describes a system comprised of signal 

 

Table 6.2: CI-based single-scale model 

 

 

  
 

  
 

  
 

  
    

 

 

 

 

 

 

  
 

      (
 

   )

 
  

 
  

 

      (
 

   )

 
  

    

 

 

  
    

  are the amounts of drugs A and B in 

the combination, while        are the 

amounts of drugs A and B that would yield 

the same effect as the combination if each 

was administered alone. 

 

The Hill function of order hd relating the 

probability of response    to the drug 

concentration x is:       
   

          

  
. Using 

this to model the response curves of drugs A 

and B individually, the CI equation can be 

expressed as shown. E is the combination 

effect.  
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Figure 6.2: Signal transduction pathways represented in the molecular-level model 

 

transduction pathways known to be highly relevant in many cancers, including HNSCC. 

These are the MAPK/ERK pathway, PI3K-Akt signaling, and their effects on modulators 

of apoptosis including p53, Bcl-2, and BAD. Figure 6.2 shows this signaling network, as 

well as the points at which the effects of EGCG and resveratrol are modeled. Some 

molecular targets are affected by both agents. EGCG has been shown to induce p53 

expression in multiple cell types, and resveratrol is also associated with p53 activation 

[243]. In addition, both EGCG and resveratrol have been shown to inhibit NF-kB 

signaling [243], AP-1 activity [243, 259, 260], and PI3K-Akt [243, 261-263]. EGCG also 

inhibits phosphorylation of EGFR and association of Raf1 and MEK1 [243, 264]. 

Resveratrol has dose-dependent effects on phosphorylation of Erk1/2 [265, 266]. Table 

6.3 shows the generalized mass action model for this system, and the relationship 

between the molecular-level model and the cellular-level model.   
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 The general structure of the generalized mass action equations in Table 6.3 is as 

follows: 

 [ ]

  
   [ ][                  ]    [ ][                  ] 

This is of course a basic approximation of the complex biochemical interactions 

occurring in the signal transduction network. Here, X is assumed to be the activated (e.g., 

phosphorylated) form of the molecule. The differential equation is second-order because 

the process of de-activation (e.g., dephosphorylation) is being described implicitly. That 

is, the kinetic parameter    is assumed to represent the rate of activation 

by                    scaled by the proportion of X which has become de-activated, and 

which can thus be activated by association with                   . The same pattern is 

followed for the kinetic parameter    and                    . A more complete 

representation of the activation or inhibition processes could include separate variables 

and equations for the active and inactive forms of X. For example: 

[      ]  [ ]  [         ] 

 [ ]

  
   [         ][                  ]    [ ][                  ]    [ ] 

 [         ]

  
    [         ][                  ]    [ ][                  ]    [ ] 

In this representation, active X would be generated by the association of                    

with the inactive form of X, and it would be removed either by association with 

                   or natural degradation back to its inactive state, governed by the kinetic 

rate constant   . This representation also makes the simplifying assumption that the total 

amount of X (active and inactive forms) remains constant under the time-scale of interest. 
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Table 6.3: Multi-scale ODE model 
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The signal transduction 

pathway model includes 

12 molecular species. 

The multi-target effects 

of EGCG and 

resveratrol are modeled 

directly on the various 

biochemical entities in 

the pathway. The model 

includes 33 rate 

parameters comprising 

activating inter-

molecular interactions 

(vi), inhibitory 

interactions  

(xi), pro-proliferation 

(pi) and pro-apoptosis 

(ai) effects, and the 

effects of EGCG (ei) 

and resveratrol (ri).  

 

 

  

 

 

 

 

 

Again, the population is 

divided into living and 

apoptotic cells. Early 

and late apoptotic cells 

are pooled together. 

 

 

The division and 

apoptosis kinetic rate 

parameters are direct 

functions of pathway 

entity concentrations. 
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Another, even more complex and realistic representation could include protein 

transcription, translation, and degradation rates, as well as detailed enzymatic response 

patterns like Michaelis-Menten or multi-substrate kinetics. The reason for avoiding these 

representations is the lack of measured kinetic rate constants and the lack of time-series 

molecular expression data for estimating these parameters. This is problematic because 

the number of these parameters will increase as the model increases in complexity. In the 

future, as additional data become available, this foundational model can be expanded to 

accommodate more specific biochemical interactions of interest.  

6.2.4. Multi-Scale Agent-Based Model 

A key assumption behind ODE models is that the population is well-mixed, with 

no spatial gradients. This is appropriate for an in vitro study in which a homogeneous cell 

population is evenly distributed in its environment. However, research into natural 

compounds for chemoprevention also involves more complex in vitro environments (e.g. 

multicellular spheroids) and in vivo studies. ABMs are well-suited for representing 

heterogeneous cell populations, inter-cellular interactions, cell movement, and the 

complex spatial structure of tumors. The multi-scale ODE model was therefore used to 

develop a multi-scale agent-based model (ABM).  

In this ABM framework each agent represents a single cell. Instead of kinetic rate 

parameters, ABMs utilize transition probabilities, i.e., the probability that each agent 

experiences division (pd) or apoptosis (pa) during a given time step. The multi-scale ODE 

is used to drive the ABM by enabling estimation of the apoptosis probability at each time 

step. For the purpose of estimating pa, pd is assumed to be constant, based on the cell 

cycle duration of the Tu212 cell line (~24 hours). The fraction of apoptosis predicted by 
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Table 6.4: Coupling the multi-scale ODE and agent-based models 

 

Total living cells after T time steps:         
       

  

 

Total apoptotic cells after T time steps: 

∑        
       

     

 

   

 

 

    (∑        
       

     

 

   

         
       

   )

 ∑        
       

     

 

   

 

 

If    cells are initially 

present, total numbers 

of living and apoptotic 

cells after a certain 

number of time steps 

(T) are represented in 

terms of probabilities 

of division (pd) and 

apoptosis (pa). 

 

 

The overall probability 

of apoptosis (c) can be 

used to estimate pa. 

 

the ODE (for a homogeneous population of the agent-cell under consideration) defines c, 

the cumulative probability of apoptosis over the prediction timeframe. As shown in Table 

6.4, pa can then be estimated by minimizing the error e.  

In this manner, the ODE model for a homogeneous population can be used to 

govern the behavior of a single agent-cell, though it may exist in a heterogeneous 

population. In turn, population heterogeneity can also affect the behavior of single agent-

cells. While the multi-scale ODE provides the forward drive to the ABM, the ABM can 

also provide feedback to the ODE model. Characteristics of the tumor microenvironment, 

such as hypoxia, can significantly modulate the activities of signal transduction 

pathways, including EGFR and PI3K-Akt signaling, thereby affecting the behavior of 

individual cells [267, 268]. The hypoxic effect experienced by a single cell can be 

estimated through the spatial environment of the ABM, and fed back into the ODE, in 

order to more realistically model microenvironmental effects on individual cells.  
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6.3. Model Performance 

Multi-scale model outperforms single-scale models in predicting response to EGCG and 

resveratrol combinations 

As shown in Figure 6.3, the naïve single-scale model was unable to replicate 

experimentally-observed trends in either the training or testing sets, demonstrating poor 

performance overall. The CI-based model was able to make reasonable predictions of 

combination effects, but lacked the structure to enable causal analysis for alternative 

(a) 

 
(b)  

 

(c)  

 
Figure 6.3: The performance of (a) the multi-scale model (RMSE = 0.0231), (b) the CI-

based single-scale model (RMSE = 0.0578), and (c) the naïve single-scale model (RMSE 

= 0.1529) for a trial on Tu212 data, in which the E30R10 and E30R15 samples were used 

in training the models, and the E40R10 and E40E15 samples were used for testing. 

RMSE values are based on the testing samples only. 
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perturbations. The multi-scale ODE model predictions of EGCG and resveratrol 

combination effects were more accurate than those of either single-scale model. This 

improvement in performance was observed across all six trials for the Tu212 cell line. 

Overall, the improvement in performance by the multi-scale model (GA-optimized) was 

statistically significant (      , Wilcoxon rank-sum test) compared to the CI-based 

and naïve single-scale models. The performance of the SQP-optimized multi-scale model 

was comparable; when discounting one outlier trial, it also showed statistically significant 

improvement over the single-scale models. Parameter estimates across trials and across 

optimization methods were generally consistent, exhibiting median Pearson correlation 

values exceeding 0.7.  

In addition, at the final simulation time step, the normalized ratios of pathway 

elements (with respect to EGFR) were compared to the normalized gene expression ratios 

for the combination treatment case. While the ratios alone cannot be used to ascertain the 

correctness of the model, the high Pearson correlation value (r = 0.89) between the 

simulated and experimental ratios implies that the model predictions remain in a 

reasonable region of the state space.  

 

SQP Optimization Shows Consistent Performance in Local Initialization Neighborhood  

The results shown in the previous section were based off of a constant initial 

parameter estimate of        , where             [          ]. Because the 

parameter optimization space may be complex and irregular, the effect of different 

initialization points on the SQP-based optimization was evaluated. The model 

performance for the Tu212 cell line across the six trials was evaluated in terms of RMSE  
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(a) 

 
(b) 

 
Figure 6.4. (a) Comparison of the SQP optimization performance at different initial 

parameter estimates for the Tu212 cell line, and (b) correlation of the optimized 

parameters obtained from different initial estimates with those obtained from the initial 

estimate of            .  
 

for six alternative initialization points, as shown in Figure 6.4(a). Initializing at     
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errors. Initializing at               and             gave an increased range of testing 

errors, and a much larger outlier value. Training errors (not shown) were consistently 

small for all initializations except for            .  

Additionally, initializations with              ,            , and             

yielded parameter estimates that had fairly high Pearson correlation values (median > 

0.8) with those estimated using            , as shown in Figure 6.5(b). Notably, during 

the other two cases of              and           , which were associated with higher 

testing error outliers and more variable correlations, stalling at low iteration counts was 

observed during the optimization process for some trials. 

 

Model-based Comparison of Cell Line Responses 

Alternative estimates of model parameters indicated differences in the responses 

of the three cell lines to the various combinations of resveratrol and EGCG. For example, 

Figure 6.5(a) shows the model predictions for the Tu686 cell line, using the parameters 

optimized for the Tu212 cell line. The combination response predictions track the 

experimental observations well, but the model over-predicted responses to treatment with 

resveratrol and EGCG individually, particularly for higher concentrations. This suggests 

that while Tu686 and Tu212 have similar responses to resveratrol and EGCG in 

combination, Tu686 is less sensitive to the individual treatments. Figure 6.5(b) shows the 

corresponding results for the SQCCY1 cell line; as for Tu686, the model over-predicted 

responses to treatment with resveratrol and EGCG individually. Moreover, compared to 

Tu686, the combination effect predictions for SQCCY1 when using the Tu212-optimized 

parameters were poorer. In comparison, model parameters optimized for the SQCCY1 

cell line effectively predicted combination responses, as shown in Figure 6.6, as well as 
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individual responses to resveratrol and EGCG (not shown). However, the SQCCY1- and 

Tu212-optimized parameter sets exhibited low correlations, implying different patterns of 

activity. 

 

(a) 

 
(b)  

 
Figure 6.5. Comparison of the experimental and predicted responses to resveratrol alone 

(left), EGCG alone (right) and the 12 combination treatments (bottom) using Tu212-

optimized parameters for (a) for the Tu686 cell line and (b) the SQCCY1 cell line.  
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Figure 6.6. Comparison of experimental and predicted responses to the 12 combination 

treatments for the SQCCY1 cell line. 

6.4. Case Studies 

One of the main goals of developing dynamic models of biological systems is to 

predict how the system may respond to alternative perturbations. A perturbation may 

represent, for example, the effect of a drug on specific reaction or on a group of reactions 

initiated by a common molecule. The model can then be used to rank alternative 

perturbations in terms of their predicted effect. In this sense, the model can identify 

potential drug targets and generate testable hypotheses. In the first case study, the multi-

scale ODE model is applied to predict which perturbations, in addition to the best-

performing EGCG-resveratrol combination (E40R15), can further increase the fraction of 

apoptotic cells for the Tu212 cell line.  

The experimental dose response data for EGCG and resveratrol in this study has 

been acquired from three HNSCC cell lines in vitro. In the second case study, the multi-

scale ABM is applied to predict how the apoptosis patterns for EGCG and resveratrol 

combinations may change in more complex cellular environments, by considering the 

microenvironmental factor of hypoxia. Hypoxia is associated with many negative effects, 

such as suppression of apoptosis and increased cancer cell survival, increased 
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angiogenesis and invasiveness, and decreased sensitivity to both radiotherapy and 

chemotherapy [267, 269]. In HNSCC in particular, hypoxia measures are associated with 

poorer overall and disease-free survival [269]. One of the key signal transduction 

pathways affected by hypoxia is PI3K-Akt signaling. In HNSCC, hypoxia has been 

shown to increase activated Akt expression both in vitro and in xenograft models; 

moreover, this effect occurs independently of upstream EGFR status [267, 270]. The 

second case study will mimic these effects by varying the initial relative Akt activity 

input to the internal ODE model driving each agent cell, as a function of the degree of 

hypoxia experienced by that agent cell.   

6.4.1. Target Prediction  

Using the Tu212 cell line response data, 14 parameters modulating inter- 

molecular interactions were selected for perturbation analysis. The parameters related to 

EGCG and resveratrol effects and the proliferation and apoptosis rates were held 

constant. Two types of perturbations were considered: doubling and halving the original 

parameter values. Each type of perturbation was applied to each of the ∑ (  
 
)  

    

       possible combinations of the 14 parameters. The combinations were ranked in 

terms of the fraction apoptosis observed after each perturbation.  For both the SQP- and 

GA-derived parameter sets, the same top two perturbations were identified, as shown in 

Figure 6.7. If only one process was perturbed, halving Akt-mediated inhibition of p53 

increased the predicted apoptotic fraction to above 0.75. If two processes were perturbed, 

halving Akt-mediated activation of NF-kB in addition increased the predicted apoptosis 

fraction to above 0.80. Further perturbations led to only slight increases in the predicted 

fraction of apoptotic cells.    
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(a) 

 
(b) 

 
Figure 6.7: (a) The predicted apoptotic response from the top perturbation is shown in 

cyan, and the response for the top two perturbations is shown in magenta. (b) The 

processes within the signaling network targeted by each perturbation are highlighted in 

cyan and magenta, respectively. 

 

These predictions emphasize the importance of Akt-mediated signaling in 

HNSCC. For example, the Head and Neck Cancer Tissue Array Initiative has shown that 

Akt-mTOR signaling is often activated in HNSCC, independently of mutant p53 or 

EGFR [271]. Moreover, the Akt signaling pathway is a key mechanism by which the cell 
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can bypass inhibition of EGFR [272, 273]. That Akt-mediated processes were the top two 

ranked perturbation targets suggests that additional synergistic effects may be observed 

by combining EGCG and resveratrol with other natural compounds that target Akt 

signaling, such as curcumin, pomegranate, and lycopene [243]. For example, a recent 

study demonstrated that combining resveratrol with curcumin induced greater pro-

apoptotic effects in several HNSCC cell lines than curcumin alone [274].  

6.4.2. Spatial Feedback and Effects of Hypoxia 

The ABM was used to investigate how spatial structures and hypoxic effects 

might affect responses to the resveratrol and EGCG combinations. Figure 6.8 describes 

this workflow and the interaction between the ODE and the ABM.  

The first case involved a uniform random distribution of cells (Figure 6.9(a)),  

 

Figure 6.8: Feedback between the ODE and the ABM, based on estimation of the O2 

gradient and resulting hypoxic effects on individual cells.  
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(a) 

 

(b) 

 
 

(c) 

 

(d)  

 
(e) 

 

(f) 

 
 

Figure 6.9: (a) uniform randomly distributed cell population; (b) spherical cell 

distribution. Baseline fraction apoptosis patterns with no O2-based effects for (c) the 

uniform population and (d) the spherical population. Apoptosis fraction patterns with O2-

based effects on Akt activity for (e) the uniform population and (f) the spherical 

population.  
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similar to the in vitro cell culture environment, while the second case involved a spherical 

distribution of cells (Figure 6.9(b)), similar to a multicellular spheroid or avascular 

tumor. In the first case, an O2 gradient was imposed by simulating the presence of a blood 

vessel along the vertical axis, from which O2 diffused into the environment. In the second 

case, the O2 gradient results from diffusion into the sphere from the ambient environment. 

In both cases, the O2 gradients were calculated following the models and parameters in 

[275, 276]. The effect of hypoxia on Akt activity was modeled as a linear function of the 

O2 gradient.  

In the case with randomly distributed cells, the fraction apoptosis predicted by the 

ABM when no hypoxic effects where present matched the experimental observations for 

the Tu212 cell line, as shown in Figure 6.9(c). In the case with cells arranged in a sphere, 

the baseline fraction apoptosis, with no O2 gradient, was predicted to be higher, as shown 

in Figure 6.9(d). This is reasonable because cell proliferation is restricted in the interior 

of the sphere due to cell crowding, while apoptosis is not. In both scenarios, the model 

predicted that even moderate increases in Akt activity (10-50%) could result in notable 

decreases in the predicted fraction of apoptotic cells. Figure 6.9(e-f) show the predicted 

response patterns when the O2 gradient resulted in a maximum 20% increase in Akt 

activity for hypoxic cells. These predictions are supported by recent findings that the pro-

apoptotic activity of curcumin, which affects many of the same pathways as EGCG and 

resveratrol, was inhibited by overexpression of active Akt [277]. 
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6.5. Gene Expression Analysis 

RNAseq analysis was used to implicate additional genes and processes for future 

expansion and refinement of the model. RNAseq data was available for four samples: no 

treatment, resveratrol-only, EGCG-only, and one combination (E40R15). Bioconductor 

packages were used to annotate sorted BAM files using the hg19 reference sequence 

from UCSC and to count reads. Differential expression analysis was performed using 

edgeR [192] to compare each treatment case against the no treatment case, with an FDR 

threshold of 0.05. Functional analysis of differentially expressed gene (DEG) lists was 

performed using DAVID [202].  

The synergistic effect of EGCG and resveratrol is apparent through the pattern of 

DEGs observed for individual and combination treatments, as shown in Table 6.5. EGCG 

treatment alone led to 54 DEGs, and resveratrol alone led to 111 DEGs. The combination 

treatment led to a more than four-fold increase, with 466 DEGs. Among all three lists, 22 

genes were in common. The DEGs associated with combination treatment also 

represented a larger variety of biological processes, as shown by Gene Ontology (GO) 

mining in Table 6.6. 19 GO terms were implicated with the combination treatment DEG 

list. Among these, two terms were also implicated in the EGCG DEG list, and four in the 

resveratrol DEG list. Key processes implicated include regulation of cell proliferation,  

 

Table 6.5: Common DEGs for three treatment cases vs. no treatment (NT) 

 

  NT vs. EGCG NT vs. Resveratrol NT vs. 
Combination 

NT vs. EGCG 54 23 48 

NT vs. Resveratrol - 111 81 

NT vs. Combination - - 466 
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Table 6.6: Significant Gene Ontology terms associated with the DEG list for the no 

treatment vs. combination case. Terms also associated with the EGCG and resveratrol 

DEG lists are marked. 

GO:0006955~immune response  

GO:0009611~response to wounding  

GO:0006952~defense response 

GO:0010033~response to organic substance   

GO:0006954~inflammatory response 

GO:0042127~regulation of cell proliferation     

GO:0048545~response to steroid hormone 

stimulus 

GO:0031960~response to corticosteroid 

stimulus  

GO:0042981~regulation of apoptosis    

GO:0009719~response to endogenous 

stimulus 

GO:0043067~regulation of programmed 

cell death  

GO:0070482~response to oxygen levels  

GO:0010941~regulation of cell death   

GO:0009615~response to virus     

GO:0051384~response to glucocorticoid 

stimulus  

GO:0001893~maternal placenta 

development   

GO:0001666~response to hypoxia   

GO:0030595~leukocyte chemotaxis 

GO:0050900~leukocyte migration   

 

apoptosis, and cell death. Notably, the response to oxygen levels and hypoxia are also 

included in this list. Overall, the results of RNAseq analysis clearly indicate that the 

combined effect of EGCG and resveratrol is much more extreme and wide-reaching than 

the effects of either alone.  

6.6. Discussion and Key Innovations 

This chapter proposes a multi-scale ODE model for predicting and studying the 

combination effects of natural compounds for HNSCC chemoprevention. The model 

successfully predicted the combination effects of EGCG and resveratrol in three HNSCC 

cell lines. In addition, a multi-scale agent-based model was developed in order to couple 

the predictions of the ODE with feedback from spatially heterogeneous and complex 

cellular environments. Case studies applied these models to predict the effects of 

additional targeted interventions and the effects of microenvironmental hypoxia on cell 

population response.  
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Multi-scale models of cancer, which can encompass scales from the atomic to the 

patient level, are valuable tools for quantitatively predicting outcomes and generating 

testable hypotheses. Many recent models have focused on specific processes in cancer 

biology, such as invasion [278, 279], angiogenesis [280], and metastasis [281]. Others 

have focused on specific cancer types. For example, models of brain cancer and non-

small cell lung cancer have related the interaction dynamics of EGFR, TGF-α, PLC-γ, 

and other molecules to proliferative or migratory cell phenotypes [282-284]. Models 

which consider drug response range from focusing on conventional chemotherapeutics 

[285, 286] and radiotherapy [287] to those describing the effects of targeted therapeutics, 

such as a tyrosine kinase inhibitor against EGFR [282], the anti-angiogenic agent 

endostatin [280], anti-invasive matrix metalloprotease [279], and antiandrogen therapy 

[288]. I distinguish the current study from prior art in two ways. First, from a biological 

and clinical perspective, this model focuses specifically on HNSCC and in particular on 

chemoprevention, not on conventional therapeutics. Second, from a modeling 

perspective, this model focuses on the complex effects of natural compounds, which 

interact with the biochemical system at multiple points, rather than targeted therapeutics.  

The current results highlight several key directions for future research. First, 

RNAseq analysis revealed that the combination effects of EGCG and resveratrol are 

much more extensive than the individual effects of either. Further research into these 

effect patterns – particularly at the protein and metabolite levels – will yield greater 

insight into the mechanisms of these natural compounds, and will indicate how they can 

be more effectively applied in clinical settings. As additional data – particularly the 

kinetic parameters governing molecular-level processes – become available, the current 
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models can be expanded and refined to include more biological details. For example, the 

molecular pathway modeled here omits some intermediate mechanistic steps, such as the 

role of IKK in the activation of NF-kB, and that of MDM2 in inhibiting p53. These and 

other interactions have relevance to how EGCG and resveratrol exert their effects [289-

292]. As such, they are important in interpreting model predictions, particularly target 

predictions. Another motivation for model expansion is that all three HNSCC cell lines 

modeled here are p53 mutants. As more information is gathered on the effects of mutant 

p53 losses and gains of function on other components of the signal transduction network, 

these cell line-specific effects can be incorporated into the model [293, 294]. Next, as the 

model predictions indicate, the response to EGCG and resveratrol may be dampened in 

more complex in vitro and in vivo settings, due to microenvironmental and other factors. 

This is a multi-faceted challenge, and potential solutions include combination with other 

natural compounds or targeted agents, as suggested by the first case study, as well as the 

development of effective drug delivery and cell-targeting strategies.  

In the long term, as these challenges are addressed, models for predicting natural 

compound chemoprevention response could become part of a personalized treatment 

planning system for HNSCC patients. Such models could take into account patient-

specific clinical data and –omic expression signatures in order to predict regimens of 

effective, non-toxic chemoprevention adjuvants. The current modeling study provides the 

groundwork for the development of such a system, with the overall goal of preventing 

recurrence, SPT development, and metastasis, and improving HNSCC patient outcomes.  

The Key Innovations of this chapter are: 
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 Developed first multi-scale models for predicting the combination effects of 

natural compounds in HNSCC 

 Tested multi-scale ODE model on dose response data from three HNSCC cell 

lines, and extended it to generate a  multi-scale ABM 

 Demonstrated application of ODE and ABM models for target prediction and 

prediction of response in complex environments, respectively 
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CHAPTER 7 

CONCLUSION 

 

The concrete goals of this dissertation were to develop mathematical modeling 

tools for mining –omic datasets and for the analysis of biological system behavior in the 

context of HNSCC. The specific technical achievements of this dissertation 

corresponding to the three research objectives are:  

1. Development and validation of mathematical modeling tools for knowledge-

driven exploratory data mining of transcriptomic, proteomic, and metabolomic 

datasets, in terms of both explicit (hypergeometric similarity measures, 

DetectTLC) and implicit (DetectTLC) similarity-based analysis 

2. Construction of predictive models using integrated analyses between –omic levels 

to discriminate between early and advanced HNSCC, and within –omic levels for 

developing robust predictive models applicable to early disease detection 

3. Development and validation of integrated molecular- and cellular-level ordinary 

differential equation model for predicting the response to natural compound 

adjuvants in HNSCC cell populations, and extension to an agent-based model for 

prediction under different microenvironmental conditions 

7.1. Concrete Innovation Deliverables 

 

The key innovations of this dissertation, as noted at the closing of each chapter, 

are summarized below:  

 (Chapter 2) Development of binary hypergeometric similarity measure using 

Fisher’s exact test 
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 (Chapter 2) Development of multivariate hypergeometric similarity measure using 

the Fisher-Freeman-Halton test 

 (Chapter 2) Development of a piecewise approximation algorithm to facilitate 

application of the multivariate hypergeometric similarity measure to high-

dimensional data vectors 

 (Chapter 2) Implementation on two HNSCC (transcriptomic and proteomic) and 

one non-HNSCC (MSI, lipidomic) datasets indicates that proposed multivariate 

hypergeometric similarity measure makes relevant selections not identified by 

other similarity measures 

 (Chapter 3) Development of the first analytical pipelines using quantitative image 

features for identifying m/z images containing spot-like regions in MSI data 

 (Chapter 3) Design, implementation, and validation of the first software tool, 

DetectTLC, for enabling and accelerating TLC-MSI studies in metabolomics by 

automatically finding mixture components of potential interest in TLC-MSI 

datasets 

 (Chapter 4) Performed the first supervised modeling study for modeling 

progression in HNSCC by integrating both proteomic and transcriptomic data 

 (Chapter 4) Developed between-omic level integrated ensemble models with 

significant improvement in performance for predicting HNSCC pathological stage 

 (Chapter 5) Performed within–omic level integrative modeling study using 

microarray and RNAseq data for detection of HNSCC  

 (Chapter 5) Translated ensemble models developed for discriminating between 

HNSCC and paired normal cases to the problem of early HNSCC detection 
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 (Chapter 5) Implemented tool to facilitate model translation and use of ensemble 

transcriptomic models in the HNSCC research community 

 (Chapter 6) Developed first multi-scale models for predicting the combination 

effects of natural compounds in HNSCC 

 (Chapter 6) Tested multi-scale ODE model on dose response data from three 

HNSCC cell lines, and extended it to generate a  multi-scale ABM 

 (Chapter 6) Demonstrated application of ODE and ABM models for target 

prediction and prediction of response in complex environments, respectively 

 

Figure 7.1 demonstrates how these deliverables map to both clinical 

challenges and technical challenges in HNSCC research.  

 

 
Figure 7.1: Mapping Deliverables to Clinical and Technical Challenges 
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7.2. Concrete Publication Deliverables 

 

The section provides a comprehensive list of publications completed during my 

years as a Ph.D. student. Those which contribute directly to this dissertation are 

highlighted in Table 7.1.  

 

Table 7.1: Overview of publications related to dissertation 

Specific 

Aim 
Sub-Aim Citation Publication Type Publication Status 

1 

Binary hypergeometric similarity measure [C1] Conference paper Published 

Multivariate hypergeometric similarity 

measure 
[J2] Journal paper Published  

DetectTLC [J6] Journal paper In preparation 

2 

Early stage vs. normal: microarray and 

RNAseq data 
[C6] Conference paper 

Accepted for 

Publication 

Early vs. advanced stage: gene and protein 

expression data  

[C4] 

[J4] 

Conference paper 

Journal paper 

Published 

Under review 

3 
Single-scale, cellular-level cancer model [C3] Conference paper Published 

Multi-scale chemoprevention model [J7] Journal paper In preparation 

  

Published or Accepted for Publication 

 

Journal Papers 

[J1] Quo CF, Kaddi C, Phan JH, Zollanvari A, Xu M, Wang MD and Alterovitz G 

(2012) Reverse engineering biomolecular systems using –omic data: challenges, 

progress and opportunities. Briefings in Bioinformatics, 13: pp. 430-445 

[J2] Kaddi CD, Parry RM and Wang MD (2013) Multivariate hypergeometric 

similarity measure. IEEE/ACM Transactions on Computational Biology and 

Bioinformatics, 10(6): 1505-1516 
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[J3] Kaddi CD, Phan JH and Wang MD (2013) Computational Nanomedicine: 

Modeling of Nanoparticle-Mediated Hyperthermal Cancer Therapy. 

Nanomedicine, 8(8): 1232-1233 

 

Book Chapters 

[B1] Kaddi CD and Wang MD (2015) Computational methods for mass 

spectrometry imaging: challenges, progress, and opportunities.  

 

Refereed (Peer-Reviewed) Conference Papers 

[C1] Kaddi C, Parry RM and Wang MD (2011) Hypergeometric similarity 

measure for spatial analysis in tissue imaging mass spectrometry. Proceedings of 

the IEEE International Conference in Bioinformatics & Biomedicine (BIBM), pp. 

604-607  

[C2] Kells K, Kong KY, White WB, Kaddi C and Wang MD (2012) LED light 

source for fluorescence endoscopy using quantum dots. Proceedings of IEEE 

EMBS-Point-of-Care Healthcare Technologies (POCHT) 2013, pp. 9-12 

[C3] Kaddi CD and Wang MD (2013) Mathematical model of the effect of inter-

cellular cooperative interactions in cancer during drug therapy.  Proceedings of 

Oak Ridge National Lab BSEC 2013, pp. 1-4. 

[C4] Kaddi CD and Wang MD (2014) Models for predicting stage in head and 

neck squamous cell carcinoma using proteomic data. Proceedings of IEEE 

Engineering in Medicine and Biology Society 2014, pp. 5216-5219   
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[C5] Sarkari S, Kaddi CD, Bennett RV, Fernández FM and Wang MD (2014) 

Comparison of clustering pipelines for the analysis of mass spectrometry imaging 

data. Proceedings of IEEE Engineering in Medicine and Biology Society 2014, 

pp. 4771-4 

[C6] Kaddi CD and Wang MD (2015) Developing Robust Predictive Models for 

Head and Neck Cancer across Microarray and RNAseq Gene Expression Data. 

Proceedings of ACM-BCB 2015. 

 

Manuscripts under Review 

 

Journal Papers 

[J4] Kaddi CD and Wang MD (2015) Models for Predicting Stage in Head and 

Neck Squamous Cell Carcinoma using Proteomic and Transcriptomic Data.  

[J5] White WB, Oh KJ, Kaddi CD, Okusanya OT, Mohs A, Nie S, Wang MD, 

Singhal S. (2015) Fluorescent Imaging System for Intraoperative Molecular 

Imaging during Endoscopic Surgery.  

 

Manuscripts in Preparation 

 

Journal Papers 

[J6] Kaddi CD, Bennett RV, Paine MRL, Weber AL, Fernández FM and Wang 

MD (2015) DetectTLC: A tool for semi-automated region of interest 

identification of reaction mixture separations on the basis of DESI images.  
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[J7] Kaddi CD, Amin ARMR, Chen Z, Shin DM, and Wang MD (2015) Multi-

scale Modeling to Predict Combination Effects of Natural Compounds for 

Chemoprevention in Head and Neck Squamous Cell Carcinoma.  

[J8] Moffitt RA, Wang X, Hurwitz SJ, Kaddi CD, Fox BM, Sizemore EK, Shin 

DM, Chen ZG and Wang MD (2015) Combined tumor growth and 

pharmacodynamic model for studying spatial dynamics and response to 

paclitaxel.  

[J9] Wu PY, [author order not finalized: Cheng CW, Hoffman R, Kaddi CD, 

Venugopalan J], and Wang MD (2015) Towards the new era of evidence based 

medicine and healthcare using big data. IEEE Transactions on Biomedical 

Engineering.  
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7.3. Directions for Future Research and Concluding Remarks 

 

The models and tools developed in this dissertation are complete and fully 

functional. However, the critical final step in a research project is to recognize potential 

future applications and extensions of the current work. Some specific avenues for further 

inquiry were mentioned in the discussion sections concluding each chapter. Here, I 

elaborate on opportunities in two dimensions: (1) basic and translational research in 

HNSCC and (2) the design and development of novel mathematical models.  

7.3.1. Basic and Translational Research in HNSCC 

One of the major goals of Big Data research in biomedicine is biomarker 

identification, for specific and practical applications like early diagnosis, patient 

stratification, and prediction of treatment response. Applying the modeling infrastructure 

developed in this dissertation to new, more comprehensive –omic datasets can greatly 

facilitate these tasks: 

 

Early Disease Detection with Transcriptomic, Proteomic, and Metabolomic Data 

Because of the differences in HNSCC outcomes according to the stage at which 

the disease is detected, molecular marker-based systems for early diagnosis of HNSCC 

could have a large clinical impact. This is particularly important for disease subsites for 

which early disease symptoms may be limited, like the oropharynx, or for which 

symptoms may be misattributed, as in the oral cavity [295, 296]. Overlap between the 

transcriptomic features identified in Chapter 5 and validated salivary mRNA markers for 

detecting oral cancer [235] is encouraging, and establishes the stage for clinical 

validation of other transcriptomic features highlighted through the models developed in 
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this research. In addition, Chapter 4 demonstrated that the integration of proteomic and 

transcriptomic data can assist in stage prediction. This between-omic level integration 

may also assist in the problem of early diagnosis, once proteomic data for matched early 

and normal patient samples becomes available. Incorporating metabolomic data into 

these models is also worthy of investigation.    

 

Integration of Mass Spectrometry Imaging and Natural Compound Chemoprevention 

Research 

The potential of MSI in HNSCC research is immense, and informative model-

driven experiments could immediately follow the acquisition of MSI datasets from 

HNSCC samples. Possible experimental settings include tumors, xenografts, or 

spheroidal cultures. MSI enables combined molecular and spatial analysis. This could be 

particularly informative following treatment with bio-active natural compounds. Chapter 

6 developed a multi-scale ABM, which is a spatial model that could be applied to 

understand and predict spatially heterogeneous molecular expression and cellular-level 

response patterns observed in MSI data. In addition, the similarity measures developed in 

Chapter 2 could be applied to assess spatial molecular expression patterns across tissue 

regions (i.e., tumor, marginal, and surrounding normal), as well as among regions 

showing different degrees of response to administered natural compounds.   

 

Integration of TLC-MSI and Chemoprevention Research 

Another key direction for research is the investigation of lipid and metabolite 

profiles in HNSCC. The natural compounds being investigated for HNSCC 
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chemoprevention affect multiple biochemical entities, both directly and indirectly. For 

example, recent studies have indicated the importance of lipid rafts to the effects of 

EGCG and resveratrol on downstream signaling [297, 298]. The DetectTLC system 

developed in Chapter 3 provides a computational framework for investigating the effects 

of natural compounds on lipids and metabolites, and hence for obtaining a better 

understanding of their mechanisms of action. 

 

Applications of Similarity Measure in Biomedical Image Analysis 

The multivariate hypergeometric similarity measure introduced in Chapter 2 may 

also be applied to other data types in addition to molecular expression –omic data. One 

potential application is with wavelets, which are used for signal and image processing in 

many different application areas. For example, in radiomics, features from wavelet-

transformed X-ray computed tomography (CT) images were among a set of image 

features used for prognostic prediction in HNSCC [299]. In this dissertation, data 

similarity was assessed based on binned expression levels. Future research could 

investigate the performance of the proposed similarity measure for comparing images and 

data in terms of wavelet features. 

Another potential application is in tissue imaging using quantum dots (QDs). QDs 

are fluorescent nanoparticles that can be conjugated to antibodies for targeted 

visualization of molecular and cellular targets [300, 301]. Compared to fluorescent dyes, 

QDs are advantageous because of their long-lasting fluorescence, target specificity, and 

multiplexing capabilities. Clinical applications are currently not possible due to the issue 

of heavy metal toxicity. However, this may change in the future as an initial trial in non-
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human primates showed no toxic effects during the first 90 days after administration 

[302]. However, QDs remain valuable for research applications. In recent HNSCC 

research in particular, QDs have been used to investigate the association of aldehyde 

dehydrogenease 1 with lymph node metastasis [303] and that of caveolin-1 with clinical 

stage, histological grade, and cancer development [304]. Additionally, QD-based 

immunohistofluorescence was observed to have greater sensitivity and objectivity 

compared to immunohistochemistry in an HNSCC application [303]. The multivariate 

hypergeometric similarity measure developed in Chapter 2 provides a framework for 

comparing fluorescent images, particularly when using multiplexed QDs. In one scenario, 

each bin (i.e., the class to which a pixel is assigned) in the reference and query images 

could represent a QD expression intensity level, enabling two QDs to be compared. In 

another scenario, each bin could represent an n-dimensional vector of expression levels 

for a group of n QDs, thereby enabling similarity assessment of multiplexed QD data.  

7.3.2. Design and Development of Novel Mathematical Models 

The design and development of new modeling techniques can assist in many 

biomedical research areas, including HNSCC. In the following section, I identify key 

directions for building upon and extending the modeling infrastructure developed in this 

dissertation: 

 

Time-Series Analysis 

Chapters 4 and 5 have demonstrated the development of integrated –omics 

models for predicting clinically relevant endpoints. However, all data currently used is 

static, obtained at a single time-point. Metabolomics data in particular is highly dynamic, 
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and has shown potential not only for early diagnosis but also for monitoring of disease 

status [160, 161, 305]. This reveals an opportunity to develop predictive models which 

utilize time-series –omic data to track patient risk and prognosis over time. Such models 

could help clinicians monitor the status of their patients and could serve to improve 

personalized medicine.   

 

Ensemble Model Construction 

Chapters 4 and 5 have also demonstrated how integrated ensemble modeling 

techniques can improve prediction performance. However, selecting the most appropriate 

ensemble from among all possible ensembles can be challenging, especially to users from 

non-computational backgrounds. A second predictive modeling layer could help to 

address this issue. For example, the input to such a model could be a new dataset of 

interest. Given historical performance patterns observed for other datasets across various 

models (as in Chapter 5), a similarity-based approach (as in Chapter 2) could be used to 

compare dataset properties, and thereby identify corresponding ensemble constructions 

that are likely to yield good performance on the new dataset.  

 

Systems Models 

Chapter 6 developed multi-scale models for predicting the response to natural 

compounds. While my previous HNSCC system model used parameters based on 

experimental data [245], parameter estimation was necessary for the more complex multi-

scale model. Thus, a key direction for improvement is parameterization of molecular- and 

cellular-level processes based on experimental measurements. This could be a dynamic 
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process in itself. For example, when a new cell line or patient becomes available, such a 

model could accept accompanying time-series data and automatically extract relevant 

parameters. If no data is available, a similarity-based approach (as in Chapter 2) may be 

used to identify the most relevant previously examined samples, and adapt experimental 

parameters from them. This would reduce the number of parameters to be estimated via 

error minimization. Next, another direction for improvement is to expand the list of 

processes associated with the multi-scale ABM to include movement and mechanical 

interactions. This would enable more realistic prediction of cellular-level behaviors, and 

investigation of cancer-relevant processes like invasion and metastasis. Lastly, 

nanoparticles – including gold nanoparticles – have been proposed as delivery vehicles to 

improve bioavailability of natural compounds [54, 306]. In addition, there has been 

evidence that the combination of natural compounds and hyperthermia can have 

synergistic effects [307]. Thus, the multi-scale ABM could be integrated with models for 

nanoparticle-based drug delivery and hyperthermia for cancer treatment, a subject which 

I have previously reviewed [308].    

7.3.3. Concluding Remarks 

In this dissertation, I have developed a suite of mathematical modeling tools to 

address key challenges in HNSCC research. It includes mathematical models for data 

mining and system dynamics that have been successfully applied to investigate HNSCC 

molecular characteristics, progression, and chemoprevention response. In the preceding 

sections, I have also discussed several potential seeds for future investigations, building 

upon this work. Overall, this dissertation contributes to the research space by accelerating 
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and enabling the application of large –omics datasets to basic and translational cancer 

research.  
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